1. 难度:中等 | |
掷2枚1元钱的硬币和3枚1角钱的硬币,1枚1元钱的硬币和至少1枚1角钱的硬币的正面朝上的概率是 . |
2. 难度:中等 | |
小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是 . |
3. 难度:中等 | |
一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是 . |
4. 难度:中等 | |
如图是一个木制圆盘,图中两同心圆,其中大圆直径为20cm,小圆的直径为10cm,一只小鸟自由自在地在空中飞行,小鸟停在小圆内(阴影部分)的概率是 . |
5. 难度:中等 | |
一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是 . |
6. 难度:中等 | |
在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是 . |
7. 难度:中等 | |
菱湖是全国著名的淡水鱼产地,某养鱼专业户为了估计他承包的鱼塘时有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条鱼做上标记,然后放回塘里,过了一段时间,待带标记的鱼和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,则塘里大约有鱼( ) A.1600条 B.1000条 C.800条 D.600条 |
8. 难度:中等 | |
一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个 |
9. 难度:中等 | |
连续掷两次骰子,它们的点数都是4的概率是( ) A. B. C. D. |
10. 难度:中等 | |
(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为( ) A. B. C. D. |
11. 难度:中等 | |
如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有两条水路、两条陆路,从B地到C地有3条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有( ) A.20种 B.8种 C.5种 D.13种 |
12. 难度:中等 | |
甲组有5位女生和10位男生,乙组有8位女生和15位男生,以下说法正确的是( ) A.在乙组中随机地抽调一人恰为女生的机会比在甲组中随机地抽调一人恰为女生的机会大 B.在乙组中随机地抽调一人恰为男生的机会比在甲组中随机地抽调一人恰为男生的机会大 C.在乙组中随机地抽调一人恰为女生的机会比在甲组中随机地抽调一人恰为男生的机会大 D.在乙组中随机地抽调一人恰为男生的机会比在甲组中随机地抽调一人恰为女生的机会小 |
13. 难度:中等 | |||||||||||||||
某市民政部门:“五•一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这此彩票中,设置如下奖项:
A. B. C. D. |
14. 难度:中等 | |
有12只外观完全相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取1只,是二等品的概率等于( ) A. B. C. D. |
15. 难度:中等 | |
一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球是黑球的概率为( ) A. B. C. D. |
16. 难度:中等 | |
某地区的年降水量,在100~150mm范围内的概率是0.12,在150~200mm内的概率是0.25,在200~250mm范围内的概率是0.16,在250~300mm范围内的概率是0.14.计算年降水量在100~200mm范围内的概率与在150~300mm范围内的概率. |
17. 难度:中等 | |
抛掷两个普通的正方体骰子,把两个骰子的点数相加,则“第一个骰子为1、第二个骰子为6,是“和为7”的一种情况,我们可以将它记为(1,6),如果一个游戏规定,掷出“和为7”时甲方赢,掷出“和为9”时乙方赢,请预测甲乙双方获胜的概率各是多少? |
18. 难度:中等 | |
如图所示,有一个转盘,转盘上有一个可转动的指针,已知指针转动一定的时间后停在红色部分、黄色部分、白色部分三者的概率之比为5:7:4,转盘的半径为2个单位,则红色部分、黄色部分、白色部分面积各是多少? |
19. 难度:中等 | |
如图所示电路中,灯泡L1、L2、L3、L4、L5无损,若闭合其中一开关,则灯泡L3能发光的概率是多少? |
20. 难度:中等 | |
小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判. (1)你认为游戏公平吗?为什么? (2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算某一不规则图形的面积呢”.请你设计方案,解决这一问题.(要求补充完整图形,说明设计步骤、原理,写出估算公式) |
21. 难度:中等 | |
某商场为了吸引顾客,设置了两种促销方式.一种方式是:让顾客通过转转盘获得购物券.规定顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准100元、50元、20元的相应区域,那么顾客就可以分别获得100元、50元、20元购物券,凭购物券可以在该商场继续购物;如果指针对准其它区域,那么就不能获得购物券.另一种方式是:不转转盘,顾客每购买100元的商品,可直接获得10元购物券.据统计,一天中共有1000人次选择了转转盘的方式,其中指针落在100元、50元、20元的次数分别为50次、100次、200次. (1)指针落在不获奖区域的概率约是多少? (2)通过计算说明选择哪种方式更合算? |