1. 难度:中等 | |
等腰三角形的底角是70°,则这个三角形的顶角的度数为( ) A.30° B.40° C.50° D.60° |
2. 难度:中等 | |
一组数据:2、1、5、4的方差是( ) A.10 B.3 C.2.5 D.0.75 |
3. 难度:中等 | |
使有意义的x的取值范围是( ) A. B. C. D. |
4. 难度:中等 | |
用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9 |
5. 难度:中等 | |
如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( ) A.40° B.30° C.50° D.60° |
6. 难度:中等 | |
等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是( ) A.平行四边形 B.矩形 C.菱形 D.正方形 |
7. 难度:中等 | |
有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) A.4个 B.3个 C.2个 D.1个 |
8. 难度:中等 | |
将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( ) A.15° B.28° C.29° D.34° |
9. 难度:中等 | |
化简:= . |
10. 难度:中等 | |
方程x2-5x=0的解是 |
11. 难度:中等 | |
在一次体检中,测得某小组5名同学的身高分别是:170,162,155,160,168(单位:厘米),则这组数据的极差是 厘米. |
12. 难度:中等 | |
如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是 cm. |
13. 难度:中等 | |
如图,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC= 度. |
14. 难度:中等 | |
如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是 . |
15. 难度:中等 | |
如图,已知EF是梯形ABCD的中位线,△DEF的面积为4cm2,则梯形ABCD的面积为 cm2. |
16. 难度:中等 | |
如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是 . |
17. 难度:中等 | |
如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为 . |
18. 难度:中等 | |
如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是 . |
19. 难度:中等 | |
计算或化简: (1); (2)(a>0,b>0). |
20. 难度:中等 | |
已知关于x的一元二次方程x2-4x+m-1=0有两个相等的实数根,求m的值及方程的根. |
21. 难度:中等 | |
如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形. |
22. 难度:中等 | |
如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F. (1)求证:CF﹦BF; (2)若CD﹦6,AC﹦8,则⊙O的半径为______,CE的长是______. |
23. 难度:中等 | |
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8 000kg,2009年平均每公顷产9 680kg,求该村水稻每公顷产量的年平均增长率. 解题方案: 设该村水稻每公顷产量的年平均增长率为x. (Ⅰ)用含x的代数式表示: ①2008年种的水稻平均每公顷的产量为______; ②2009年种的水稻平均每公顷的产量为______; (Ⅱ)根据题意,列出相应方程______; (Ⅲ)解这个方程,得______; (Ⅳ)检验:______; (Ⅴ)答:该村水稻每公顷产量的年平均增长率为______%. |
24. 难度:中等 | |
如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G. (1)直线FC与⊙O有何位置关系?并说明理由; (2)若OB=BG=2,求CD的长. |
25. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x. (1)当x的值为______时,以点P、A、D、E为顶点的四边形为直角梯形; (2)当x的值为______时,以点P、A、D、E为顶点的四边形为平行四边形; (3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由. |
26. 难度:中等 | |
类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1. 若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}. 解决问题: (1)计算:{3,1}+{1,2};{1,2}+{3,1}; (2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量” {1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量” {3,1}平移,最后的位置还是点B吗?在图1中画出四边形OABC. ②证明四边形OABC是平行四边形. (3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程. |
27. 难度:中等 | |
如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F. (1)求证:OE∥AB; (2)求证:EH=AB; (3)若,求的值. |
28. 难度:中等 | |
如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长. |