1. 难度:中等 | |
抛物线y=(x-3)2+1的顶点坐标是( ) A.(-3,1) B.(3,1) C.(-3,-1) D.(3,-1) |
2. 难度:中等 | |
二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是( ) A.先向左平移2个单位,再向上平移1个单位 B.先向左平移2个单位,再向下平移1个单位 C.先向右平移2个单位,再向上平移1个单位 D.先向右平移2个单位,再向下平移1个单位 |
3. 难度:中等 | |
如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会( ) A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小 |
4. 难度:中等 | |
二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是( ) A.k<3 B.k<3且k≠0 C.k≤3 D.k≤3且k≠0 |
5. 难度:中等 | |
已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法: ①图象的开口一定向上; ②图象的顶点一定在第四象限; ③图象与x轴的交点有一个在y轴的右侧. 以上说法正确的个数为( ) A.0 B.1 C.2 D.3 |
6. 难度:中等 | |
已知反比例函数y=的图象如图所示,则二次函数y=2kx2-x+k2的图象大致为( ) A. B. C. D. |
7. 难度:中等 | |||||||||||||||
根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断该二次函数的图象与x轴( )
A.只有一个交点 B.有两个交点,且它们分别在y轴两侧 C.有两个交点,且它们均在y轴同侧 D.无交点 |
8. 难度:中等 | |
在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( ) A. B. C. D. |
9. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象开口向上,并经过点(-1,2),(1,0).下列结论正确的是( ) A.当x>0时,函数值y随x的增大而增大 B.当x>0时,函数值y随x的增大而减小 C.存在一个负数x,使得当x<x时,函数值y随x的增大而减小;当x>x时,函数值y随x的增大而增大 D.存在一个正数x,使得当x<x时,函数值y随x的增大而减小;当x>x时,函数值y随x的增大而增大 |
10. 难度:中等 | |
已知二次函数y=x2-x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中正确的是( ) A.m-1的函数值小于0 B.m-1的函数值大于0 C.m-1的函数值等于0 D.m-1的函数值与0的大小关系不确定 |
11. 难度:中等 | |
如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是 . |
12. 难度:中等 | |
如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2= . |
13. 难度:中等 | |
如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为 (保留根号). |
14. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论: ①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数). 其中正确的结论有 (填序号) |
15. 难度:中等 | |
如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式. |
16. 难度:中等 | |
推理运算:二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0). (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标; (3)填空:把二次函数的图象沿坐标轴方向最少平移______个单位,使得该图象的顶点在原点. |
17. 难度:中等 | |
已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D. (1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象; (2)求四边形OCDB的面积. |
18. 难度:中等 | |
如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4). (1)试确定这两个函数的表达式; (2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围. |
19. 难度:中等 | |
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件. (1)求y与x的函数关系式及自变量x的取值范围; (2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少? |
20. 难度:中等 | |
某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示. (1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是______. (2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式; (3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加? |
21. 难度:中等 | |
如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点. (1)求k1、k2的值. (2)直接写出时x的取值范围; (3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由. |
22. 难度:中等 | |
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4), C(2,0)三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值. (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. |
23. 难度:中等 | |
如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计). (1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少; (2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由; (3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由. |