1. 难度:中等 | |
在下列二次根式中,与是同类二次根式的是( ) A. B. C. D. |
2. 难度:中等 | |
已知正三角形的边长为6,则这个正三角形的外接圆半径是( ) A. B.2 C.3 D. |
3. 难度:中等 | |
等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是( ) A.平行四边形 B.矩形 C.菱形 D.正方形 |
4. 难度:中等 | |
老师对小丽的4次数学模拟考试成绩进行统计分析,判断小丽的数学成绩是否稳定,老师需要知道小丽这4次数学成绩的( ) A.方差或标准差 B.平均数或中位数 C.众数或频率 D.频数或众数 |
5. 难度:中等 | |
如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( ) A. B. C. D. |
6. 难度:中等 | |
如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=a,则a的值为( ) A.135° B.120° C.110° D.100° |
7. 难度:中等 | |
如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是( ) A. B.若MN与⊙O相切,则 C.若∠MON=90°,则MN与⊙O相切 D.l1和l2的距离为2 |
8. 难度:中等 | |||||||||||||||||
抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.从表可知,下列说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个 |
9. 难度:中等 | |
计算:= . |
10. 难度:中等 | |
已知⊙O1的半径为3cm,⊙O2的半径为4cm,两圆的圆心距O1O2为7cm,则⊙O1与⊙O2的位置关系是 . |
11. 难度:中等 | |
某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是 . |
12. 难度:中等 | |
若有意义,则实数x的取值范围是 . |
13. 难度:中等 | |
关于x的方程x2-2x+k=0有两个不相等的实数根,则实数k的取值范围 . |
14. 难度:中等 | |
已知圆锥的底面直径为4cm,其母线长为3cm,则它的侧面积为 cm2. |
15. 难度:中等 | |
当x=-1时,代数式x2+2x-6的值是 . |
16. 难度:中等 | |
已知3、a、4、b、5这五个数据,其中a、b是方程x2-3x+2=0的两个根,则这五个数据的方差是 . |
17. 难度:中等 | |
如图,ABCD是平行四边形,E在AC上,AE=2EC,F在AB上,BF=2AF,若△BEF的面积是2平方厘米,则平行四边形ABCD的面积是 平方厘米. |
18. 难度:中等 | |
如图,⊙O1和⊙O2的半径为2和3,连接O1O2,交⊙O2于点P,O1O2=7,若将⊙O1绕点P按顺时针方向以30°/秒的速度旋转一周,请写出⊙O1与⊙O2相切时的旋转时间为 秒. |
19. 难度:中等 | |
计算: (1)-+; (2) |
20. 难度:中等 | |
解方程: (1)x2-7x+10=0 (2)解方程:x2-2x-1=0 |
21. 难度:中等 | |||||||||||||||||||
某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. |
22. 难度:中等 | |
已知点A(1,1)在二次函数y=x2-2ax+b图象上. (1)用含a的代数式表示b; (2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标. |
23. 难度:中等 | |
如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处). (1)请在图中画出羊活动的区域. (2)求出羊活动区域的面积. |
24. 难度:中等 | |
如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可) 关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°. 已知:在四边形ABCD中,______,______; 求证:四边形ABCD是平行四边形. |
25. 难度:中等 | |
如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(≈1.732,结果精确到0.1m) |
26. 难度:中等 | |
如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E. (1)求证:DE⊥AC; (2)若∠ABC=30°,求tan∠BCO的值. |
27. 难度:中等 | |
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN. 下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明. 证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE. (下面请你完成余下的证明过程) (2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由. (3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明) |
28. 难度:中等 | |
如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点. (1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标; (2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值; (3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由. |