1. 难度:中等 | |
如图为主视图方向的几何体,它的俯视图是( ) A. B. C. D. |
2. 难度:中等 | |
关于x的方程(a-5)x2-4x-1=0有实数根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 |
3. 难度:中等 | |
如图,小区的一角有一块形状为等腰梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是( ) A.等腰梯形 B.矩形 C.菱形 D.正方形 |
4. 难度:中等 | |
用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9 |
5. 难度:中等 | |
如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为( ) A.18cm B.36cm C.40cm D.72cm |
6. 难度:中等 | |
关于x的一元二次方程2x2-3x-a2+1=0的一个根为2,则a的值是( ) A.1 B. C.- D.± |
7. 难度:中等 | |
如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别为( ) A.16cm,40° B.8cm,50° C.16cm,50° D.8cm,40° |
8. 难度:中等 | |
如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( ) A.7米 B.6米 C.5米 D.4米 |
9. 难度:中等 | |
已知关于x的一元二次方程的一个根是2,写出一个符合条件的方程: . |
10. 难度:中等 | |
如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= 度. |
11. 难度:中等 | |
关于x的方程x2-2x+k=0有两个不相等的实数根,则实数k的取值范围 . |
12. 难度:中等 | |
新平县城在“旧城改造”中,计划在城内一块如图所示空地上,种植草皮美化环境,已知这种草皮每平米要80元,买这种草皮至少需 元. |
13. 难度:中等 | |
CD是Rt△ABC斜边上的高线,AD、BD是方程x2-6x+4=0的两根,则△ABC的面积为 . |
14. 难度:中等 | |
如图,在△ABC中,∠ABC、∠ACB的平分线交于点F,过F作DE∥BC,分别交AB、AC于D、E,已知△ADE的周长为24cm,且BC=8cm,则△ABC的周长= cm. |
15. 难度:中等 | |
如图:A1,B1,C1分别是BC,AC,AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点…这样延续下去.已知△ABC的周长是1,△A1B1C1的周长是L1,△A2B2C2的周长是L2…AnBnCn的周长是Ln,则Ln= . |
16. 难度:中等 | |
选择适当的方法解下列一元二次方程:5(y2-y)=3(y2-1) |
17. 难度:中等 | |
如图所示是两棵小树在一个路灯下的影子. (1)请画出光线及路灯灯泡的位置; (2)在适当位置画出电线杆; (3)若左边树AB的高度是3米,影长是4米,树的根茎B离电线杆的距离是2米,求电线杆的高度. |
18. 难度:中等 | |
已知关于x的一元二次方程x2-6x+k=0有两个实数根. (1)求k的取值范围; (2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值. |
19. 难度:中等 | |
如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可) 关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°. 已知:在四边形ABCD中,______,______; 求证:四边形ABCD是平行四边形. |
20. 难度:中等 | |
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元? |
21. 难度:中等 | |
如图,有一块等腰梯形的草坪,草坪上底长48米,下底长108米,上下底相距40米,现要在草坪中修建一条横、纵向的“H”型甬道,甬道宽度相等.甬道面积是整个梯形面积的.设甬道的宽为x米. (1)求梯形ABCD的周长; (2)用含x的式子表示甬道的总长; (3)求甬道的宽是多少米? |
22. 难度:中等 | |
在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2 (1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95) (2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由. |
23. 难度:中等 | |
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN. 下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明. 证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE. (下面请你完成余下的证明过程) (2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由. (3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明) |