1. 难度:中等 | |
已知二次函数的图象开口向上,且顶点在y轴的负半轴上,请你写出一个满足条件的二次函数的表达式 .(答案不唯一) |
2. 难度:中等 | |
若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则 (只要求写出一个). |
3. 难度:中等 | |
平移抛物线y=x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式 . |
4. 难度:中等 | |
如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是 . |
5. 难度:中等 | |
已知y=ax2+bx+c的图象如下,则:a+b+c 0,a-b+c ,0.2a+b 0. |
6. 难度:中等 | |
将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值为 . |
7. 难度:中等 | |
与y=2(x-1)2+3形状相同的抛物线解析式为( ) A.y=1+x2 B.y=(2x+1)2 C.y=(x-1)2 D.y=2x2 |
8. 难度:中等 | |
下列关于抛物线y=x2+2x+1的说法中,正确的是( ) A.开口向下 B.对称轴方程为x=1 C.与x轴有两个交点 D.顶点坐标为(-1,0) |
9. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则点A(a,b)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
10. 难度:中等 | |
当a<0时,抛物线y=x2+2ax+1+2a2的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
11. 难度:中等 | |
如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( ) A. B. C. D. |
12. 难度:中等 | |
已知二次函数y=-2x2+4x+k(其中k为常数),分别取x1=-0.99,x2=0.98,x3=0.99,那么对应的函数值为y1,y2,y3中,最大的为( ) A.y3 B.y2 C.y1 D.不能确定,与k的取值有关 |
13. 难度:中等 | |
已知二次函数y=2x2+9x+34,当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取x1+x2时的函数值与( ) A.x=1时的函数值相等 B.x=0时的函数值相等 C.x=时的函数值相等 D.x=-时的函数值相等 |
14. 难度:中等 | |
已知二次函数y=x2-bx+1(-1<b<1),在b从-1变化到1的过程中,它所对应的抛物线的位置也随之变化,下列关于抛物线的移动方向描述正确的是( ) A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动 C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动 |
15. 难度:中等 | |||||||||||
根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( )
A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.20 |
16. 难度:中等 | |
小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A.0.71s B.0.70s C.0.63s D.0.36s |
17. 难度:中等 | |
y=ax2+bx+c图象与x轴交于A、B与y轴交于C,OA=2,OB=1,OC=1,求函数解析式.(求出所有可能的情况) |
18. 难度:中等 | |
已知二次函数y=x2-(m2+8)x+2(m2+6),设抛物线顶点为A,与x轴交于B、C两点,问是否存在实数m,使△ABC为等腰直角三角形?如果存在求m;若不存在说明理由. |
19. 难度:中等 | |
如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D. (1)试确定这个一次函数关系式; (2)求过A、B、C三点的抛物线的函数关系式. |
20. 难度:中等 | |
已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示. (1)求抛物线的解析式,写出抛物线的顶点坐标; (2)画出抛物线y=ax2+bx+c当x<0时的图象; (3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0. |
21. 难度:中等 | |
某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元). (1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. |
22. 难度:中等 | |
如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m. (1)建立如图所示的直角坐标系,求此抛物线的解析式; (2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米? |
23. 难度:中等 | |
已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点. (1)求此抛物线的解析式; (2)若点D为线段OA的一个三等分点,求直线DC的解析式; (3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长. |