1. 难度:中等 | |
如图,直线与两个同心圆分别相交于图示的各点,则正确的是( ) A.MP与RN的大小关系不定 B.MP=RN C.MP<RN D.MP>RN |
2. 难度:中等 | |
如图,A、B、C是⊙O上的三点,已知∠O=60°,则∠C=( ) A.20° B.25° C.30° D.45° |
3. 难度:中等 | |
如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB大小为( ) A.25° B.30° C.40° D.50° |
4. 难度:中等 | |
如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是( ) A.1 B. C. D.2 |
5. 难度:中等 | |
将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( ) A.15° B.28° C.29° D.34° |
6. 难度:中等 | |
如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有( ) A.1个 B.2个 C.3个 D.4个 |
7. 难度:中等 | |
如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有( ) A.1个 B.2个 C.3个 D.4个 |
8. 难度:中等 | |
如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是( ) A.10 B.12 C.8 D.16 |
9. 难度:中等 | |
已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使点A、C、D中至少有一个点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是 . |
10. 难度:中等 | |
如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是 度. |
11. 难度:中等 | |
如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为 . |
12. 难度:中等 | |
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 . |
13. 难度:中等 | |
如图,AB是⊙O的直径,点C在⊙O上,∠BAC=30°,点P在线段OB上运动.设∠ACP=x,则x的取值范围是 . |
14. 难度:中等 | |
如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深为 米. |
15. 难度:中等 | |
如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF= . |
16. 难度:中等 | |
如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65度.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器 台. |
17. 难度:中等 | |
如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O与x轴交于A,B两点,与y轴交于C,D两点.E为⊙O上在第一象限的某一点,直线BF交⊙O于点F,且∠ABF=∠AEC,则直线BF对应的函数表达式为 . |
18. 难度:中等 | |
如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为 . |
19. 难度:中等 | |
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC. 求证:CD=CE. |
20. 难度:中等 | |
已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°. (1)求∠EBC的度数; (2)求证:BD=CD. |
21. 难度:中等 | |
如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上. (1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,AB=8,求⊙O直径的长. |
22. 难度:中等 | |
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC. (1)求证:∠ACO=∠BCD; (2)若EB=8cm,CD=24cm,求⊙O的直径. |
23. 难度:中等 | |
如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F. (1)求证:CF﹦BF; (2)若CD﹦6,AC﹦8,则⊙O的半径为______,CE的长是______. |
24. 难度:中等 | |
如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF. |
25. 难度:中等 | |
如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.求弦AD,CD的长. |
26. 难度:中等 | |
如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H. (1)如果⊙O的半径为4,,求∠BAC的度数; (2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD; (3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由. |
27. 难度:中等 | |
如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上. (1)如图1,当n=1时,求正三角形的边长a1; (2)如图2,当n=2时,求正三角形的边长a2; (3)如题图,求正三角形的边长an(用含n的代数式表示) |