1. 难度:中等 | |
要使式子有意义,a的取值范围是( ) A.a≠0 B.a>-2且a≠0 C.a>-2或a≠0 D.a≥-2且a≠0 |
2. 难度:中等 | |
下列式子运算正确的是( ) A. B. C. D. |
3. 难度:中等 | |
下列图形中,既是轴对称图形,又是中心对称图形的是( ) A.直角三角形 B.等腰梯形 C.平行四边形 D.菱形 |
4. 难度:中等 | |
如图,A、B、C是⊙O上的三点,且A是优弧上与点B、点C不同的一点,若△BOC是直角三角形,则△BAC必是( ) A.等腰三角形 B.锐角三角形 C.有一个角是30°的三角形 D.有一个角是45°的三角形 |
5. 难度:中等 | |
如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是( ) A.6s B.4s C.3s D.2s |
6. 难度:中等 | |
已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是( ) A.1cm B.5cm C.1cm或5cm D.0.5cm或2.5cm |
7. 难度:中等 | |
已知抛物线y=ax2+bx+c(a<0)过A(-2,0)、B(0,0)、C(-3,y1)、D(3,y2)四点,则y1与y2的大小关系是( ) A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定 |
8. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ①ac>0;②a-b+c<0;③当x<0时,y<0; ④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根. 其中错误的结论有( ) A.②③ B.②④ C.①③ D.①④ |
9. 难度:中等 | |
抛物线y=2x2-bx+3的对称轴是直线x=1,则b的值为 . |
10. 难度:中等 | |
已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是 . |
11. 难度:中等 | |
抛物线y=x2-4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是 . |
12. 难度:中等 | |
将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2. |
13. 难度:中等 | |
如图,已知⊙P的半径为2,圆心P在抛物线y=-1上运动,当⊙P与x轴相切时,圆心P的坐标为 . |
14. 难度:中等 | |
在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为 . |
15. 难度:中等 | |
如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. |
16. 难度:中等 | |
如图,D是半径为R的⊙O上一点,过点D作⊙O的切线交直径AB的延长线于点C,下列四个条件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=R.其中,使得BC=R的有(填正确结论的序号) . |
17. 难度:中等 | |
解方程:x2-2x-1=0 |
18. 难度:中等 | |
先化简,后求值:,其中a=2. |
19. 难度:中等 | |
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2 (1)求m的取值范围; (2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值. |
20. 难度:中等 | |
如图,已知二次函数y=-+bx+c的图象经过A(2,0)、B(0,-6)两点. (1)求这个二次函数的解析式; (2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积. |
21. 难度:中等 | |
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积. (1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率; (2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平. |
22. 难度:中等 | |
如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P. (1)求证:AC=CP; (2)若PC=6,求图中阴影部分的面积(结果精确到0.1). (参考数据:,π=3.14) |
23. 难度:中等 | |
某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍). (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为w元,求w与x的函数关系式; (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? |
24. 难度:中等 | |
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=+bx+c经过B点,且顶点在直线x=上. (1)求抛物线对应的函数关系式; (2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由; (3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标. |