1. 难度:中等 | |
下列说法中正确的是( ) A.“打开电视,正在播放《新闻联播》”是必然事件 B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖 C.数据1,1,2,2,3的众数是3 D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查 |
2. 难度:中等 | |
一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个红球的概率是( ) A. B. C. D. |
3. 难度:中等 | |
在抛物线y=x2-4上的一个点是( ) A.(4,4) B.(1,-4) C.(2,0) D.(0,4) |
4. 难度:中等 | |
如图,两条抛物线y1=-x2+1,y2=与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( ) A.8 B.6 C.10 D.4 |
5. 难度:中等 | |
如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是( ) A. B. C. D. |
6. 难度:中等 | |
如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( ) A.2cm2 B.4cm2 C.8cm2 D.16cm2 |
7. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2-4ac与反比例函数y=在同一坐标系内的图象大致为( ) A. B. C. D. |
8. 难度:中等 | |
如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( ) A. B. C. D. |
9. 难度:中等 | |
在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别标有1、2、3、4、5这5个数字,从中任摸一个球,球面数字是奇数的概率是 . |
10. 难度:中等 | |
某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 . |
11. 难度:中等 | |
已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为 . |
12. 难度:中等 | |
如图,甲,乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A处目测得点A与甲,乙楼顶B、C刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米. |
13. 难度:中等 | |
将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是 . |
14. 难度:中等 | |
已知二次函y=-x2-2x+m的部分图象如图所示,则关于x的一元二次方程-x2-2x+m=0的解为 . |
15. 难度:中等 | |
如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. |
16. 难度:中等 | |
如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a-b<0;④b2+8a>4ac中正确的是(填写序号) . |
17. 难度:中等 | |
小刚参观上海世博会,由于仅有一天的时间,他上午从A-中国馆、B-日本馆、C-美国馆中任意选择一处参观,下午从D-韩国馆、E-英国馆、F-德国馆中任意选择一处参观. (1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可); (2)求小刚上午和下午恰好都参观亚洲国家展馆的概率. |
18. 难度:中等 | |
如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论. |
19. 难度:中等 | |
小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m) |
20. 难度:中等 | |
如图,已知二次函数y=-+bx+c的图象经过A(2,0)、B(0,-6)两点. (1)求这个二次函数的解析式; (2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积. |
21. 难度:中等 | |
如图,△ABC在方格纸中 (1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标; (2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′; (3)计算△A′B′C′的面积S. |
22. 难度:中等 | |
为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳能路灯? |
23. 难度:中等 | |
如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3). (1)求抛物线的解析式; (2)设抛物线顶点为D,求四边形AEDB的面积; (3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由. |