1. 难度:中等 | |
两圆的半径分别为3cm和4cm,圆心距为1cm,则两圆的位置关系是( ) A.外切 B.内切 C.相交 D.外离 |
2. 难度:中等 | |
在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. |
3. 难度:中等 | |
如果x=2是一元二次方程x2-x+m=0的解,那么m的值是( ) A.0 B.2 C.6 D.-2 |
4. 难度:中等 | |
如图,△ABC中,DE∥BC,AE=2,EC=3,则DE:BC的值是( ) A.2:3 B.5:2 C.3:5 D.2:5 |
5. 难度:中等 | |
如图,C是⊙O上一点,O是圆心,若∠C=35°,则∠AOB的度数为( ) A.35° B.70° C.105° D.150° |
6. 难度:中等 | |
方程x2=4x的解是( ) A.x=4 B.x=2 C.x=4或x=0 D.x=0 |
7. 难度:中等 | |
将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4( ) A.先向左平移3个单位,再向上平移4个单位 B.先向左平移3个单位,再向下平移4个单位 C.先向右平移3个单位,再向上平移4个单位 D.先向右平移3个单位,再向下平移4个单位 |
8. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则下列说法错误的是( ) A.ac<0 B.方程ax2+bx+c=0的根是x1=-1,x2=3 C.a+b+c>0 D.当x>1时,y随x的增大而增大 |
9. 难度:中等 | |
已知:如图,△ABC中,P是AB边上的一点,连接CP.满足 时△ACP∽△ABC.(添加一个条件即可). |
10. 难度:中等 | |
根据如图所示的程序计算函数值,若输入的x的值为1,则输出的结果为 . |
11. 难度:中等 | |
一个钢管放在V形架内,如图所示其截面图,O为钢管的圆心.如果钢管的半径为10cm,∠MPN=60°,则OP= cm. |
12. 难度:中等 | |
如图,∠BDC的正切值等于 . |
13. 难度:中等 | |
如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结束所走过的路径长度为 . |
14. 难度:中等 | |
|
15. 难度:中等 | |
解方程:x2-4x=5 |
16. 难度:中等 | |
已知:关于x的方程 (1)当m取何值时,方程有两个实数根? (2)为m选取一个合适的整数,使得方程有两个不相等的整数根,并求出这两个根. |
17. 难度:中等 | |
已知:抛物线y=x2-2x-3 (1)用配方法把该函数化为y=a(x-h)2+k的形式,并写出它的对称轴和顶点坐标; (2)画出它的图象. |
18. 难度:中等 | |
如图,小明想测量某建筑物BC的高,站在点F处,看建筑物的顶端B,测得仰角为30°,再往建筑物方向前行40米到达点E处,看到其顶端B,测得仰角为60°,求建筑物BC的长(结果精确到0.1,) |
19. 难度:中等 | |
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D. (1)求证:BC是⊙O切线; (2)若BD=5,DC=3,求AC的长. |
20. 难度:中等 | |
如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶? |
21. 难度:中等 | |
已知如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于点M(0,2),N(0,8),求P点坐标. |
22. 难度:中等 | |
如图,从一个直径为2的圆形铁皮中剪下一个圆心角为90°的扇形. (1)求这个扇形的面积(结果保留π); (2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?说明理由. |
23. 难度:中等 | |
仿照例子解题:“已知(x2+2x-1)(x2+2x+2)=4,求x2+2x的值”, 在求解这个题目中,运用数学中的整体换元可以使问题变得简单,具体方法如下: 【解析】 设x2+2x=y,则原方程可变为:(y-1)(y+2)=4 整理得y2+y-2=4即:y2+y-6=0 解得y1=-3,y2=2 ∴x2+2x的值为-3或2 请仿照上述解题方法,完成下列问题: 已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值. |
24. 难度:中等 | |
某商店销售一种食用油,已知进价为每桶40元,市场调查发现,若以每桶50元的价格销售,平均每天可以销售90桶油,若价格每升高1元,平均每天少销售3桶油, 设每桶食用油的售价为x元(x≥50),商店每天销售这种食用油所获得的利润为y元. (1)用含有x的代数式分别表示出每桶油的利润与每天卖出食用油的桶数; (2)求y与x之间的函数关系式; (3)当每桶食用油的价格为55元时,可获得多少利润? (4)当每桶食用油的价格定为多少时,该商店一天销售这种食用油获得的利润最大?最大利润为多少? |
25. 难度:中等 | |
如图,在△ABC中,∠C=90°,∠A=30°,BC=1,将另外一个含30°角的△EDF的30°角的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直. (1)设AD=x,CF=y,求y与x之间的函数解析式,并写出函数自变量的取值范围; (2)如果△CEF与△DEF相似,求AD的长. |
26. 难度:中等 | |
如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(-2,0),O(0,0),B(0,2),把Rt△AOB绕着点O顺时针旋转90°得到Rt△BOC,(点A旋转到点B的位置),抛物线y=ax2+bx+c(a≠0)经过B,C两点,与x轴的另一个交点为点D,顶点为点P,对称轴为直线x=3, (1)求该抛物线的解析式; (2)连接BC,CP,PD,BD,求四边形PCBD的面积; (3)在抛物线上是否存在一点M,使得△MDC的面积等于四边形PCBD的面积?如果存在,求出点M的坐标;如果不存在,请说明理由. |