1. 难度:中等 | |
关于x的方程x2+|x|-a2=0的所有实数根之和等于( ) A.-1 B.1 C.0 D.-a2 |
2. 难度:中等 | |
现定义两种运算“⊕”“*”.对于任意两个整数,a⊕b=a+b-1,a*b=a×b-1,则(6⊕8)*(3⊕5)的结果是( ) A.60 B.90 C.112 D.69 |
3. 难度:中等 | |
如图,已知圆锥的母线长OA=6,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A处.则小虫所走的最短距离为( ) A.12 B.4π C. D. |
4. 难度:中等 | |
在Rt△ABC边上有一点P(点P不与点A、点B重合),过点P作直线截△ABC,使截得的三角形与△ABC相似,满足条件的直线共有( ) A.2条 B.3条 C.4条 D.5条 |
5. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则下列式子中①abc<0;②0<b<-2a;③;④a+b+c<0成立的个数有( ) A.1个 B.2个 C.3个 D.4个 |
6. 难度:中等 | |
已知实数a满足|2008-a|+=a,那么a-20082值是( ) A.2009 B.2008 C.2007 D.2006 |
7. 难度:中等 | |
已知x2-x-1=0,那么代数式x3-2x+1的值是 . |
8. 难度:中等 | |
如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC绕点C按逆时针方向旋转角α后到△A′B′C′的位置,其中A′、B′分别是A、B的对应点,B在A′B′上,CA′交AB于D.则∠BDC的度数为 度. |
9. 难度:中等 | |
如图,在矩形ABCD中,AB=5,BC=12,将矩形ABCD沿对角线对折,然后放在桌面上,折叠后所成的图形覆盖桌面的面积是 . |
10. 难度:中等 | |
五个互不相等自然数的平均数是15,中位数是18,则这五个数中最大数的最大值为 . |
11. 难度:中等 | |
如图,△ABC和△DEF不相似,但∠A=∠D.能否将这两个三角形分别分割成两个三角形,使△ABC所分成的每个三角形与△DEF分成的每个三角形对应相似?如果能,请设计出一种分割方案. |
12. 难度:中等 | |
某超市去年12月份的销售额为100万元,今年2月份的销售额比今年1月份的销售额多24万元,若去年12月份到今年2月份每个月销售额增长的百分数相同. 求:(1)这个相同的百分数; (2)2月份的销售额. |
13. 难度:中等 | |
如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线. (1)求抛物线的解析式; (2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式; (3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由. 第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标. |
14. 难度:中等 | |
已知y=m2+m+4,若m为整数,在使得y为完全平方数的所有m的值中,设m的最大值为a,最小值为b,次小值为c.(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.) (1)求a、b、c的值; (2)对a、b、c进行如下操作:任取两个求其和再除以,同时求其差再除以,剩下的另一个数不变,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,所得三个数的平方和等于2008证明你的结论. |