1. 难度:中等 | |
如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为( ) A.35° B.40° C.50° D.80° |
2. 难度:中等 | |
已知在△ABC中,∠C=90°且△ABC不是等腰直角三角形,设sinB=n,当∠B是最小的内角时,n的取值范围是( ) A. B. C. D. |
3. 难度:中等 | |
如图所示,在△ABC中,DE∥AB∥FG,且FG到DE、AB的距离之比为1:2.若△ABC的面积为32,△CDE的面积为2,则△CFG的面积S等于( ) A.6 B.8 C.10 D.12 |
4. 难度:中等 | |
如图,⊙O1,⊙O2,⊙O3三圆两两相切,为⊙O1,⊙O2的公切线,为半圆,且分别与三圆各切于一点.若⊙O1,⊙O2的半径均为1,则⊙O3的半径为何( ) A.1 B. C.-1 D.+1 |
5. 难度:中等 | |
如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为( ) A. B. C. D. |
6. 难度:中等 | |
二次函数y=-x2+bx+c的图象如图所示,下列几个结论: ①对称轴为x=2;②当y>0时,x<0或x>4;③函数解析式为y=-x(x-4);④当x≤0时,y随x的增大而增大.其中正确的结论有 (填写序号) |
7. 难度:中等 | |
如图,小圆的圆心在原点,半径为3,大圆的心坐标为(a,0)半径为5.如果两圆内含,那么a的取值范围是 . |
8. 难度:中等 | |
如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为 . |
9. 难度:中等 | |
如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依此类推,若各种开本的矩形都相似,那么等于 . |
10. 难度:中等 | |
函数y=k(x-1)的图象向左平移一个单位后与反比例函数y=的图象的交点为A、B,若A点坐标为(1,2),则B点的坐标为 . |
11. 难度:中等 | |
如图,在半径为1的⊙O中,AB为直径,C为弧AB的中点,D为弧CB的三等分点,且弧DB的长等于弧CD长的两倍,连接AD并延长交⊙O的切线CE于点E(C为切点),则AE的长为 . |
12. 难度:中等 | |
《中华人民共和国道路交通管理条理》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时.”如图所示,已知测速站M到公路l的距离MN为30米,一辆小汽车在公路l上由东向西行驶,测得此车从点A行驶到点B所用的时间为2秒,并测得∠AMN=60°,∠BMN=30度.计算此车从A到B的平均速度为每秒多少米(结果保留两个有效数字),并判断此车是否超过限速.(参考数据:≈1.732,≈1.414) |
13. 难度:中等 | |
如图,一块等腰三角形钢板的底边长为80cm,腰长为50cm. (1)求能从这块钢板上截得的最大圆的半径; (2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少cm? (3)求这块等腰三角形钢板的内心与外心之间距离. |
14. 难度:中等 | |
已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点. (1)求C1的顶点坐标; (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标; (3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围. |
15. 难度:中等 | |
如图1所示,以点M(-1,O)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-x-与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE,⊙M的半径r,CH的长; (2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值; (3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由. |