1. 难度:中等 | |
-2的相反数是( ) A. B.- C.-2 D.2 |
2. 难度:中等 | |
下列计算正确的是( ) A.a3•a2=a6 B.(π-3.14)=1 C.()-1=-2 D.=±3 |
3. 难度:中等 | |
2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( ) A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106 |
4. 难度:中等 | |
下列根式中属最简二次根式的是( ) A. B. C. D. |
5. 难度:中等 | |
不等式组的解集在数轴上表示正确的是( ) A. B. C. D. |
6. 难度:中等 | |
关于x的方程(a-5)x2-4x-1=0有实数根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 |
7. 难度:中等 | |
如图是一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是( ) A.8 B.10 C.12 D.14 |
8. 难度:中等 | |
下列说法: (1)是一个无理数; (2)8的立方根是±2; (3)函数y=的自变量x的取值范围是x>1; (4)平分弦的直径垂直于弦; (5)方程x2-2x-99=0可通过配方变形为(x-1)2=100; (6)两条直线被第三条直线所截,同位角相等. 正确说法的个数是( ) A.2个 B.3个 C.4个 D.5个 |
9. 难度:中等 | |
分解因式:mn2-m= . |
10. 难度:中等 | |
双曲线y=的部分图象如图所示,那么k= . |
11. 难度:中等 | |
在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是 (结果保留π). |
12. 难度:中等 | |
如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线.若大圆半径为10cm,小圆半径为6cm,则弦AB的长为 cm. |
13. 难度:中等 | |
如图,直线a∥b,l与a、b交于E、F点,PF平分∠EFD交a于P点,若∠1=70°,则∠2= 度. |
14. 难度:中等 | |
如图所示,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B内切,那么⊙A由图示位置需向右平移 个单位长. |
15. 难度:中等 | |
如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是 . |
16. 难度:中等 | |
用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n个图形中需要黑色瓷砖 块(用含n的代数式表示). |
17. 难度:中等 | |
先化简,再选一个你认为适当的数代入求值:. |
18. 难度:中等 | |
解方程:. |
19. 难度:中等 | |
如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0). (1)请直接写出点A关于y轴对称的点的坐标; (2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标; (3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标. |
20. 难度:中等 | |
如图,已知在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,EF⊥BC于F,求证:四边形AEFG为菱形. |
21. 难度:中等 | |
如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C. (1)求一次函数解析式; (2)求C点的坐标; (3)求△AOC的面积. |
22. 难度:中等 | |
如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE. (1)请探究FD与⊙O的位置关系,并说明理由; (2)若⊙O的半径为2,BD=,求BC的长. |
23. 难度:中等 | |||||||||||||||||||||||||
为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动, 初三各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:
①从众数和平均数相结合看(分析哪个年级成绩好些); ②从平均数和中位数相结合看(分析哪个年级成绩好些). (3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些?并说明理由. |
24. 难度:中等 | |
在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时(即米/秒),并在离该公路100米处设置了一个监测点A.在如图所示的直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在A的北偏东45°方向上,另外一条高等级公路在y轴上,AO为其中的一段. (1)求点B和点C的坐标; (2)一辆汽车从点B匀速行驶到点C所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:≈1.7) (3)若一辆大货车在限速路上由C处向西行驶,一辆小汽车在高等级公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少? |
25. 难度:中等 | |
如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. |