1. 难度:中等 | |
如图,小正方形的边长均为l,则下列图中的三角形(阴影部分)与△ABC相似的是( ) A. B. C. D. |
2. 难度:中等 | |
用配方法解方程x2-2x-5=0时,原方程应变形为( ) A.(x+1)2=6 B.(x+2)2=9 C.(x-1)2=6 D.(x-2)2=9 |
3. 难度:中等 | |
若=(x+y)2,则x-y的值为( ) A.-1 B.1 C.2 D.3 |
4. 难度:中等 | |
如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个 |
5. 难度:中等 | |
如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是( ) ①∠1=∠A;②;③∠B+∠2=90°;④BC:AC:AB=3:4:5;⑤AC•BD=AD•CD. A.1 B.2 C.3 D.4 |
6. 难度:中等 | |
武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的影响,预计今年比2010年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是( ) A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%) C.12%+7%=2•x% D.(1+12%)(1+7%)=(1+x%)2 |
7. 难度:中等 | |
如图,在等边△ABC中,D、E、F分别是BC,AC,AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的面积之比等于( ) A.1:3 B.2:3 C.:2 D.:3 |
8. 难度:中等 | |
一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A.第4张 B.第5张 C.第6张 D.第7张 |
9. 难度:中等 | |
若关于x的方程kx2+(k+2)x+=0有两个不相等的实数根,则k的取值范围是 . |
10. 难度:中等 | |
对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= . |
11. 难度:中等 | |
如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是 . |
12. 难度:中等 | |
将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是 . |
13. 难度:中等 | |
先化简、再求值:-a-2),其中a=-3. |
14. 难度:中等 | |
解方程:(x-3)2+4x(x-3)=0. |
15. 难度:中等 | |
解方程:x2-2x-2=0 |
16. 难度:中等 | |
甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感? |
17. 难度:中等 | |
如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,则EF的长为 . |
18. 难度:中等 | |
宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示): 第一步:作一个正方形ABCD; 第二步:分别取AD,BC的中点M,N,连接MN; 第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E; 第四步:过E作EF⊥AD,交AD的延长线于F. 请你根据以上作法,证明矩形DCEF为黄金矩形. |
19. 难度:中等 | |
阅读下列材料,然后回答问题.在进行二次根式去除时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简: (一) (二) (三) 以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简: (四) (1)化简. ①参照(三)式得=______ |
20. 难度:中等 | |
当m是什么整数时,关于x的一元二次方程mx2-4x+4=0与x2-4mx+4m2-4m-5=0的解都是整数? |
21. 难度:中等 | |
三个牧童A、B、C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块相等的矩形,大家分头守在这三个矩形的中心(对角线交点),看守自己的一块牧场.过了一段时间,牧童B和牧童C又分别提出了新的划分方案.牧童B的划分方案如图2:三块矩形的面积相等,牧童的位置在三个小矩形的中心.牧童C的划分方案如图3:把正方形的牧场分成三块矩形,牧童的位置在三个小矩形的中心,并保证在有情况时三个人所需走的最大距离相等.请回答: (1)牧童B的划分方案中,牧童______(填A、B或C)在有情况时所需走的最大距离较远; (2)牧童C的划分方案是否符合他们商量的划分原则,为什么?(提示:在计算时可取正方形边长为2) |
22. 难度:中等 | |
如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时OA′、B′C′分别与直线BC相交于P、Q. (1)四边形OA′B′C′的形状是______,当α=90°时,的值是______; (2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值; ②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积; (3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由. |
23. 难度:中等 | |
已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5. (1)k为何值时,△ABC是以BC为斜边的直角三角形? (2)k为何值时,△ABC是等腰三角形?并求△ABC的周长. |
24. 难度:中等 | |
如图,已知△ABC中,∠BAC=120°,AD是角平分线.求证:. |
25. 难度:中等 | |
如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB. (1)求的值. (2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似? (3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由. |