1. 难度:中等 | |
抛物线y=(x-2)2+3的对称轴是( ) A.直线x=-2 B.直线x=2 C.直线x=-3 D.直线x=3 |
2. 难度:中等 | |
小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是( ) A. B. C. D. |
3. 难度:中等 | |
如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点.当一次函数的值大于反比例函数的值时,自变量x的取值范围是( ) A.-2<x<1 B.0<x<1 C.x<-2和0<x<1 D.-2<x<1和x>1 |
4. 难度:中等 | |
在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是,则“宝藏”点的坐标是( ) A.(,) B.(-2,1) C.(5,2)或(1,-2) D.(2,-1)或(-2,1) |
5. 难度:中等 | |
如图,直线m是一次函数y=kx+b的图象,则k的值是( ) A.-1 B.-2 C.1 D.2 |
6. 难度:中等 | |
如图1,从矩形纸片AMEF中剪去矩形BCDM后,动点P从点B出发,沿BC、CD、DE、EF运动到点F停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则图形ABCDEF的面积是( ) A.32 B.34 C.36 D.48 |
7. 难度:中等 | |
如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则( ) A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3 |
8. 难度:中等 | |
已知正比例函数y=2x与反比例函数y=的图象相交于A,B两点,若A点的坐标为(1,2),则B点的坐标为( ) A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,1) |
9. 难度:中等 | |
如图,正△AOB的顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为( ) A.(2,0) B.(,0) C.(,0) D.(,0) |
10. 难度:中等 | |
二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( ) A.ac<0 B.当x=1时,y>0 C.方程ax2+bx+c=0(a≠0)有两个大于1的实数根 D.存在一个大于1的实数x,使得当x<x时,y随x的增大而减小;当x>x时,y随x的增大而增大 |
11. 难度:中等 | |
如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是 . |
12. 难度:中等 | |
已知:点A(m,m)在反比例函数y=的图象上,点B与点A关于坐标轴对称,以AB为边作等边△ABC,则满足条件的点C有 个. |
13. 难度:中等 | |
根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有 个点. |
14. 难度:中等 | |
如图1,矩形AOBP的面积为6,反比例函数y=的图象经过点P,那么k的值为 ;直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图2所示,则关于x的不等式k1x+b>k2x的解为 . |
15. 难度:中等 | |
如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=-x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为 . |
16. 难度:中等 | |
反比例函数y1=与一次函数y2=-x+b的图象交于点A(2,3)和点B(m,2).由图象可知,对于同一个x,若y1>y2,则x的取值范围是 . |
17. 难度:中等 | |
函数yl=x(x≥0),(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当x>3时,y2>y1;③当x=1时,BC=8;④当x逐渐增大时,yl随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是 . |
18. 难度:中等 | |
如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3). (1)求反比例函数的解析式及E点的坐标; (2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由. |
19. 难度:中等 | |
如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0). (1)当t=4时,求直线AB的解析式; (2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积; (3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由. |
20. 难度:中等 | |
已知:在平面直角坐标系中,抛物线y=ax2-x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2. (1)求该抛物线的解析式及顶点D的坐标; (2)若点P(0,t)是y轴上的一个动点,请进行如下探究: 探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由; 探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x=) |
21. 难度:中等 | |
如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长;当t为何值时,MN∥OC; (2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? (3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?若存在,求出这时的t值;若不存在,请说明理由. |
22. 难度:中等 | |
如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F. (1)求该二次函数的解析式; (2)若设点P的横坐标为m,用含m的代数式表示线段PF的长; (3)求△PBC面积的最大值,并求此时点P的坐标. |
23. 难度:中等 | |
如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A(1,0)、B(5,0)两点. (1)求抛物线的解析式和顶点C的坐标; (2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°). ①当α等于多少度时,△CPQ是等腰三角形? ②设BP=t,AQ=s,求s与t之间的函数关系式. |