1. 难度:中等 | |
等腰三角形的一个内角为120°,则这个等腰三角形的底角等于( ) A.20° B.30° C.45° D.60° |
2. 难度:中等 | |
一元二次方程x2=3x的根为( ) A.x=3 B.x1=0,x2=3 C.x=-3 D.x1=-3,x2=0 |
3. 难度:中等 | |
菱形具有而平行四边形不一定具有的性质是( ) A.对角相等 B.对边相等 C.邻边相等 D.对边平行 |
4. 难度:中等 | |
下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( ) A. B. C. D. |
5. 难度:中等 | |
已知α为锐角,tan(90°-α)=,则α的度数为( ) A.30° B.45° C.60° D.75° |
6. 难度:中等 | |
已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( ) A.(2,1) B.(-2,-1) C.(-2,1) D.(2,-1) |
7. 难度:中等 | |
已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=的图象上,则( ) A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 |
8. 难度:中等 | |
如果α是锐角,且cosα=,那么sinα的值是( ) A. B. C. D.2 |
9. 难度:中等 | |
如果反比例函数的图象过点(2,-3),那么k= . |
10. 难度:中等 | |
从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是 |
11. 难度:中等 | |
如图所示,把一张矩形纸片ABCD沿对角线BD折叠,已知AB=6、BC=8,则BF= . |
12. 难度:中等 | |
二次函数y=2(x+3)2-5的顶点坐标是 . |
13. 难度:中等 | |
一个直角三角形有两条边长为3和4,则较小锐角的正切值是 . |
14. 难度:中等 | |
反比例函数的图象的两个分支分别位于第二、四象限,则m的取值范围是 . |
15. 难度:中等 | |
如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为 m.(结果精确到0.1m) |
16. 难度:中等 | |
(1)解方程:x2+8x-9=0 (2). |
17. 难度:中等 | |
画出图中三棱柱的三视图. |
18. 难度:中等 | |
如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=. (1)求这两个函数的解析式; (2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积. |
19. 难度:中等 | |
已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形. |
20. 难度:中等 | |
一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球. (1)共多少种不同的结果? (2)摸出2个黑球有多少种不同的结果? (3)摸出2个黑球的概率是多少? |
21. 难度:中等 | |
长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? |
22. 难度:中等 | |
如图,临江市为促进本地经济发展,计划修建跨河大桥,需要测出河的宽度AB,在河边一座高度为300米的山顶观测点D处测得点A,点B的俯角分别为a=30°,β=60°. 求河的宽度AB. |