1. 难度:中等 | |
为了看到柜顶上的物品,我们常常向后退几步或踮起脚,这其中的道理是( ) A.增大柜顶的盲区 B.减小柜顶的盲区 C.增高视点 D.缩短视线 |
2. 难度:中等 | |
如图,矩形ABCD的两条边与圆相交于M、N、E、F四点,若AM=4,MN=5,DE=3,则EF的长是( ) A.3.5 B.5 C.7 D.8 |
3. 难度:中等 | |
如图,两条宽度均为a的公路相交成α角,这两条公路在相交处的公共部分的面积是( ) A. B. C.a2sinα D.a2cosα |
4. 难度:中等 | |
⊙O的半径为5,直线l上有一点P到圆心O的距离等于5,则直线l与⊙O的位置关系是( ) A.相切 B.相交 C.相离 D.相切或相交 |
5. 难度:中等 | |
一个物体的主视图如图,则它的俯视图可能是( ) A. B. C. D. |
6. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,且方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是( ) A.k<2 B.k≤2 C.k<3 D.1<k<3 |
7. 难度:中等 | |
如图,点A、B、C、E、D在⊙O上,且∠BAC=35°,∠EDC=50°,则∠BOE的度数为( ) A.85° B.135° C.170° D.175° |
8. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=8cm,则DC的长为( ) A.cm B.cm C.cm D.8cm |
9. 难度:中等 | |
如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子( ) A.越大 B.越小 C.不变 D.无法确定 |
10. 难度:中等 | |
点M是半径为3cm的⊙O外一点,且OM=4cm,那么以M为圆心且与⊙O相切的圆的半径一定是( ) A.1cm B.7cm C.1cm或6cm D.1cm或7cm |
11. 难度:中等 | |
如图所示,二次函数y=ax2+a与反比例函数的图象大致是( ) A. B. C. D. |
12. 难度:中等 | |
在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长 B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长 D.无法判断谁的影子长 |
13. 难度:中等 | |
若⊙A,⊙B,⊙C两两外切,它们的半径分别为2,4,6,则△ABC的中线AD的长为( ) A.4 B.5 C.6 D.无法计算 |
14. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a,b同号;②当x=-1和x=3时,函数数值相等;③2a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个 |
15. 难度:中等 | |
如图,若正△A1B1C1内接于正△ABC的内切圆,则的值为( ) A. B. C. D. |
16. 难度:中等 | |
如图,所示,是某超市自动扶梯的示意图,大厅两层之间的距离h=6.5米,自动扶梯的倾角为30°,若自动扶梯运行速度为v=0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒. |
17. 难度:中等 | |
在房子外的屋檐E处安有一台监视器,房子前有一块落地的广告牌,如图是其横断面.已知房子上的监视器离地面3m,广告牌高为1.5m,广告牌距离房子5m,则横断面中监视器的盲区的长度为 m. |
18. 难度:中等 | |
如图,⊙O是△ABC的内切圆,切点为D、E、F,若∠A=100°,∠C=30°,则∠DFE的度数是 . |
19. 难度:中等 | |
若抛物线y=x2-bx+4的顶点在x轴上,则b的值为 . |
20. 难度:中等 | |
如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD,垂足为C,若AB=2cm,半圆O的半径为2cm,则BC的长为 cm. |
21. 难度:中等 | |
下面是一天中四个不同时刻两根电线杆的影子. 将它们按时间先后顺序进行排列(填写序号) . |
22. 难度:中等 | |
如图ABCD是各边长都大于2的四边形,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在四边形的相邻两边上),则这4条弧长的和是 . |
23. 难度:中等 | |
体育课上,小明同学练习推铅球,如图是铅球被推出后所经的路线,铅球从点A处出手,在点B处落地,它的运行路线满足,则这次推铅球的成绩是 米. |
24. 难度:中等 | |
如图,PA切⊙O于点A,AB⊥OP,垂足为B,若PO=8cm,BO=2cm,则PA的长为 cm. |
25. 难度:中等 | |
如图是某工件的三视图,根据图中尺寸可求得该工件的全面积为 cm2. |
26. 难度:中等 | |
如图,△ABC中,∠B=45°,∠C=60°,AB=cm,以AB为直径的⊙O交BC于点D,求CD的长? |
27. 难度:中等 | |
广告墙旁有两根直立的木杆甲和乙. (1)在太阳光下,如果乙杆的影子刚好不落在广告墙上,请你在图中画出此时的太阳光线AB及甲木杆的影子CD; (2)如果甲杆长6米,乙杆长4米,乙杆到广告墙的距离为2米,求甲杆的影长. |
28. 难度:中等 | |
如图,射线BA,BC相交成90°角,O是射线BC上一点,以点O为圆心,BO长为半径作⊙O. (1)将射线BA绕点B按顺时针方向旋转60°至BD位置那么BD与⊙O相切吗?请给出证明; (2)射线BA绕点B按顺时针方向旋转多少度,能与⊙O相切(直接写出结论). |
29. 难度:中等 | |
如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为45°,测得岸边点D的俯角为29°,又知河宽CD为60米.现需从河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长.(精确到0.1). 参考数据:sin29°≈0.48,cos29°≈0.87,tan 29°≈0.55,tan61°≈l.80,≈1.41. |
30. 难度:中等 | |
某校数学研究小组在研究有关二次函数及其图象性质时,发现了一个重要结论:抛物线y=ax2+2x+3(a≠0),当实数a变化时,它们的顶点都在某条直线上. (1)请你协助探求出这条直线的表达式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它吗?并说明理由. |
31. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm.以AB为直径作圆O,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动. (1)求⊙O的半径长. (2)求四边形PQCD的面积y关于P、Q运动时间t的函数表达式,并求出当四边形PQCD为等腰梯形时,四边形PQCD的面积. (3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由. |