1. 难度:中等 | |
下列性质中,等腰三角形具有而直角三角形不一定具有的是( ) A.两边之和大于第三边 B.有一个角的平分线垂直于这个角的对边 C.有两个锐角的和等于90° D.内角和等于180° |
2. 难度:中等 | |
如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( ) A. B. C. D. |
3. 难度:中等 | |
如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( ) A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形 |
4. 难度:中等 | |
图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在( ) A.① B.② C.③ D.④ |
5. 难度:中等 | |
上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是( ) A.168(1+a)2=128 B.168(1-a%)2=128 C.168(1-2a%)=128 D.168(1-a2%)=128 |
6. 难度:中等 | |
如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值一定等于( ) A.6 B.8 C.4 D.4 |
7. 难度:中等 | |
方程x2-4x=0的解为 . |
8. 难度:中等 | |
已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为 cm2. |
9. 难度:中等 | |
如图,正方体的棱长为2,O为AD的中点,则O,A1,B三点为顶点的三角形面积为 . |
10. 难度:中等 | |
如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是 . ﹙多填或错填的得0分,少填的酌情给分﹚. |
11. 难度:中等 | |||||||||
如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况.实验数据记录如下:
|
12. 难度:中等 | |
将4个数a,b,c,d排成2行2列,两边各加一条竖直线记成,定义:,上述记号叫做2阶行列式.若,则x= . |
13. 难度:中等 | |
在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为,那么袋中球的总数量为 个. |
14. 难度:中等 | |
如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.该矩形草坪BC边的长是 米. |
15. 难度:中等 | |
在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为 . |
16. 难度:中等 | |
一个缺口朝前的立体图形如图所示,请画出它的三视图. |
17. 难度:中等 | |
如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F. (1)求证:△BOE≌△DOF; (2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论. |
18. 难度:中等 | |
某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100-2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? |
19. 难度:中等 | |
有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解) |
20. 难度:中等 | |
如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=______,BC=______ |
21. 难度:中等 | |
如图,点P的坐标为(2,),过点P作x轴的平行线交y轴于点A,交双曲线y=(x>0)于点N;作PM⊥AN交双曲线y=(x>0)于点M,连接AM.已知PN=4. (1)求k的值.(2)求△APM的面积. |
22. 难度:中等 | |
如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE. (1)证明:∠APD=∠CBE; (2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么? |
23. 难度:中等 | |
如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由. |