1. 难度:中等 | |
下列各组数中,互为相反数的一组是( ) A.2与- B.(-1)2与1 C.-12与1 D.2与|-2| |
2. 难度:中等 | |
把不等式组的解集表示在数轴上,正确的是( ) A. B. C. D. |
3. 难度:中等 | |
下列几何体的主视图与众不同的是( ) A. B. C. D. |
4. 难度:中等 | |
将如图①的矩形ABCD纸片沿EF折叠得到图②,折叠后DE与BF相交于点P,如果∠BPE=130°,则∠PEF的度数为( ) A.60° B.65° C.70° D.75° |
5. 难度:中等 | |
如图1,在直角梯形ABCD,∠B=90°,DC∥AB,动点P从B点出发,由B--C--D--A沿边运动,设点P运动的路程为x,△ABP的面积为y,如果关于x的函数y的图象如图2,则△ABC的面积为( ) A.10 B.16 C.18 D.32 |
6. 难度:中等 | |
据媒体报道,我国因环境污染造成的巨大经济损失,每年高达6890000000元,这个数用科学记数法表示正确的是 .(并保留2个有效数字) |
7. 难度:中等 | |
函数y=中自变量x的取值范围是 . |
8. 难度:中等 | |
分解因式:2x3-8x= . |
9. 难度:中等 | |
如图,梯形ABCD中,AB∥CD,AD=CD,E、F分别是AB、BC的中点,若∠1=35°,则∠D= 度. |
10. 难度:中等 | |
已知圆锥的母线长为30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为 . |
11. 难度:中等 | |
如图,⊙O中OA⊥BC,∠CDA=25°,则∠AOB的度数为 度. |
12. 难度:中等 | |
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(-2,-2),则k的值为 . |
13. 难度:中等 | |
如图,正方形ABCD的面积为1,M是AB的中点,连接AC、DM,则图中阴影部分的面积是 . |
14. 难度:中等 | |
二次函数的图象如图所示,点A位于坐标原点,A1,A2,A3,…,A2009在y轴的正半轴上,B1,B2,B3,…,B2009在二次函数第一象限的图象上,若△AB1A1,△A1B2A2,△A2B3A3,…,△A2008B2009A2009都为等边三角形,计算出△A2008B2009A2009的边长为 . |
15. 难度:中等 | |
图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y与n之间的函数关系式y= . |
16. 难度:中等 | |
先化简,再求值:,其中. |
17. 难度:中等 | |
如图,在直角梯形ABCD中,AB∥CD,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF. (1)求证:四边形ADEF是正方形; (2)取线段AF的中点G,连接EG,若BG=CD,试说明四边形GBCE是等腰梯形. |
18. 难度:中等 | |||||||||||||||||||||||||
某校团委生活部为了了解本校九年级学生的睡眠情况,随机调查了50名九年级学生的睡眠时间情况,并绘制了如下的频数分布表和频数分布直方图.
(1)补全频数分布表和频数分布直方图; (2)若初中生合理的睡眠时间范围为7≤t<9,那么请你估算该校500名九年级学生中睡眠时间在此范围内的人数是多少? |
19. 难度:中等 | |
有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y). (1)用列表或画树状图的方法写出点Q的所有可能坐标; (2)求点Q落在直线y=x-3上的概率. |
20. 难度:中等 | |
课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在A处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度. |
21. 难度:中等 | |
如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD. (1)试问:CG是⊙O的切线吗?说明理由; (2)请证明:E是OB的中点; (3)若AB=8,求CD的长. |
22. 难度:中等 | |||||||||||||
某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
(1)求y与x之间的函数关系式; (2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种; (3)若平均每户村民集资700元,能否满足所需费用最少的修建方案. |
23. 难度:中等 | |
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0. (1)求抛物线的解析式. (2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动. ①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围. ②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由. |