1. 难度:中等 | |
若点A(m-3,1-3m)在第三象限,则m的取值范围是( ) A. B.m<3 C.m>3 D. |
2. 难度:中等 | |
已知抛物线y=-x2+4x+3,则该抛物线的顶点坐标为( ) A.(1,1) B.(4,11) C.(4,-5) D.(-4,11) |
3. 难度:中等 | |
如图,已知抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,并且经过点P(3,0),则a-b+c的值为( ) A.3 B.-3 C.-1 D.0 |
4. 难度:中等 | |
抛物线y=ax2+bx+c图象如图所示,则一次函数y=-bx-4ac+b2与反比例函数y=在同一坐标系内的图象大致为( ) A. B. C. D. |
5. 难度:中等 | |
函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( ) A. B. C. D. |
6. 难度:中等 | |
已知三点(x1,y1)、(x2,y2)、(x3,y3)均在双曲线上y=,且x1<x2<0<x3,则下列各式正确的是( ) A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1 |
7. 难度:中等 | |
如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中-1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<-1,其中结论正确的有( ) A.1个 B.2个 C.3个 D.4个 |
8. 难度:中等 | |
如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( ) A.-3 B.1 C.5 D.8 |
9. 难度:中等 | |
如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则( ) A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3 |
10. 难度:中等 | |
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(-2,-2),则k的值为( ) A.-2 B.4 C.3 D.2 |
11. 难度:中等 | |
若一次函数的图象经过反比例函数图象上的两点(1,m)和(n,2),则这个一次函数的解析式是 . |
12. 难度:中等 | |
如图,菱形ABCD的三个顶点在二次函数y=ax2-2ax+(a<0)的图象上,点A、B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为 . |
13. 难度:中等 | |
已知关于x的函数y=(m-1)x2+2x+m图象与坐标轴只有2个交点,则m= . |
14. 难度:中等 | |
老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质: 甲:函数的图象不经过第三象限; 乙:函数的图象经过第一象限; 丙:当x<2时,y随x的增大而减小; 丁:当x<2时,y>0. 已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数 . |
15. 难度:中等 | |
已知反比例函数的图象经过点(-1,-2). (1)求y与x的函数关系式; (2)若点(2,n)在这个图象上,求n的值. |
16. 难度:中等 | |
如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系, 求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围; (2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道? |
17. 难度:中等 | |
为预防“非典”,某学校对教室采取药熏的方式进行消毒,已知药物燃烧时室内每立方米空气中含药量y(mg)与时间x(min)成正比例,药物燃烧后y与x成反比例,已知药物8min燃烧完,此时室内空气中每立方米的含药量为6mg. (1)研究表明:当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需几分钟后,学生才能回教室? (2)研究表明:当空气中每立方米的含药量不低于3mg,且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? |
18. 难度:中等 | |
设a、b是关于x的方程kx2+2(k-3)x+(k-3)=0的两个不相等的实根(k是非负整数),一次函数y=(k-2)x+m与反比例函数的图象都经过点(a,b). (1)求k的值; (2)求一次函数和反比例函数的解析式. |
19. 难度:中等 | |
2011年3月16日上午10时日本福岛第一核电站第3号反应堆发生了爆炸.为了抑制核辐射进一步扩散,东电公司决定向6号反应堆注水冷却,铀棒被放在底面积为100m2、高为20m的长方体水槽中的一个圆柱体桶内,如图1所示,向桶内注入流量一定的水,注满后,继续注水,直至注满水槽为止(假设圆柱体桶在水槽中的位置始终不改变). 水槽中水面上升的高度 h 与注水时间 t 之间的函数关系如图2所示(铀棒的体积忽略不计). (1)若圆柱休的体积为Vm3,则将水槽中的水注入至与圆柱体等高时所需水量是多少?(用含V的式子表示); (2)求圆柱体的底面积; (3)若圆柱体的高为9m,求注水的速度及注满水槽所用的时间. |
20. 难度:中等 | |
如图,在平面直角坐标系中,四边形ABCD是边长为8的正方形,OA=2,求: (1)写出A、B、C、D各点的坐标; (2)若正方形ABCD的两条对角线相交于点P,请求出经过O、P、B三点的抛物线的解析式; (3)在(2)中的抛物线上,是否存在一点Q,使△QAB的面积为16?如果存在,请求出Q点的坐标;如果不存在,请说明理由. |
21. 难度:中等 | |
如图,点C在反比例函数的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3. (1)求反比例函数的解析式; (2)将过点O且与OC所在直线关于y轴对称的直线向上平移2个单位后得到直线AB,如果CD=1,求直线AB的解析式. |
22. 难度:中等 | |
一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元. (1)求一次至少买多少只,才能以最低价购买? (2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围; (3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少? |