1. 难度:中等 | |
式子有意义,则x的取值范围是( ) A.x>1 B.x<1 C.x≥1 D.x≤1 |
2. 难度:中等 | |
下列计算正确的是( ) A.=±4 B. C. D. |
3. 难度:中等 | |
下列图形中是中心对称图形的是( ) A. B. C. D. |
4. 难度:中等 | |
用配方法解方程x2-2x-5=0时,原方程应变形为( ) A.(x+1)2=6 B.(x+2)2=9 C.(x-1)2=6 D.(x-2)2=9 |
5. 难度:中等 | |
半径分别为1cm和5cm的两圆相交,则圆心距d的取值范围是( ) A.d<6 B.4<d<6 C.4≤d<6 D.1<d<5 |
6. 难度:中等 | |
某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( ) A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182 C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182 |
7. 难度:中等 | |
如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为( ) A.6.5米 B.9米 C.13米 D.15米 |
8. 难度:中等 | |
如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是( ) A.点E B.点F C.点G D.点H |
9. 难度:中等 | |
如图,⊙O中,∠AOB=70°,∠OBC=35°,则∠OAC等于( ) A.20° B.35° C.60° D.70° |
10. 难度:中等 | |
如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( ) A.2 B.2+ C.2 D.2+ |
11. 难度:中等 | |
若点A(a,3)与点B(4,-3)关于原点对称,则a= . |
12. 难度:中等 | |
参加一次聚会的每两人都握了一次手,所有人共握手10次,有 人参加聚会. |
13. 难度:中等 | |
若关于x的方程x2-mx+3=0有实数根,则m的值可以为 .(任意给出一个符合条件的值即可). |
14. 难度:中等 | |
在△ABC中,∠C=90°,BC=4cm,AC=3cm.把△ABC绕点A顺时针旋转90°后,得到△AB1C1(如图所示),则点B所走过的路径长为 cm. |
15. 难度:中等 | |
如果最简二次根式与能合并,那么a= . |
16. 难度:中等 | |
已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为 cm2. |
17. 难度:中等 | |
如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α( 0°<α<180°),则∠α= . |
18. 难度:中等 | |
已知a、b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于 . |
19. 难度:中等 | |
计算:(2)解方程:x2+4x+2=0. |
20. 难度:中等 | |
如图,根据要求画图. (1)把△ABC向右平移5个方格,画出平移的图形. (2)以点B为旋转中心,把△ABC顺时针方向旋转90度,画出旋转后的图形. |
21. 难度:中等 | |
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? |
22. 难度:中等 | |
为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元 (1)求该学校为新增电脑投资的年平均增长率; (2)从2009年到2011年,该中学三年为新增电脑共投资多少万元? |
23. 难度:中等 | |
已知一元二次方程x2-2x+m=0. (1)若方程有两个实数根,求m的范围; (2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值. |
24. 难度:中等 | |
如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°. (1)直线BD是否与⊙O相切?为什么? (2)连接CD,若CD=5,求AB的长. |
25. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s. (1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由; (2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值. |
26. 难度:中等 | |
有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器: (1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少; (2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少? |
27. 难度:中等 | |
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点. (1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论; (2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由; (3)在(2)的情况下,求ED的长. |
28. 难度:中等 | |
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C. (1)求弦AB的长; (2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由; (3)记△ABC的面积为S,若=4,求△ABC的周长. |