1. 难度:中等 | |
对于反比例函数y=,下列说法正确的是( ) A.图象经过点(1,-1) B.图象位于第二、四象限 C.图象是中心对称图形 D.当x<0时,y随x的增大而增大 |
2. 难度:中等 | |
抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是( ) A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位 C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位 |
3. 难度:中等 | |
如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( ) A.60° B.50° C.40° D.30° |
4. 难度:中等 | |
若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为( ) A.1:3 B.1:9 C.3:1 D.1: |
5. 难度:中等 | |
若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( ) A.m>-2 B.m<-2 C.m>2 D.m<2 |
6. 难度:中等 | |
已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( ) A.a>0 B.b<0 C.c<0 D.a+b+c>0 |
7. 难度:中等 | |
已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是( ) A.都相似 B.都不相似 C.只有(1)相似 D.只有(2)相似 |
8. 难度:中等 | |
已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( ) A. B. C. D. |
9. 难度:中等 | |||||||||||||||
若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
A.5 B.-3 C.-13 D.-27 |
10. 难度:中等 | |
一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为( ) A. B. C. D. |
11. 难度:中等 | |
如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则( ) A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3 |
12. 难度:中等 | |
如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是( ) A.3π B.6π C.5π D.4π |
13. 难度:中等 | |
已知反比例函数解析式的图象经过(1,-2),则k= . |
14. 难度:中等 | |
已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为 厘米2. |
15. 难度:中等 | |
将二次函数y=x2-4x+5化成y=(x-h)2+k的形式,则y= . |
16. 难度:中等 | |
如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB= m. |
17. 难度:中等 | |
如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,则∠BAD= 度. |
18. 难度:中等 | |
如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是 . |
19. 难度:中等 | |
已知抛物线当x=2时有最小值-4,且抛物线过点A(3,0),则求该抛物线的解析式? |
20. 难度:中等 | |
如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD. |
21. 难度:中等 | |
如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数图象的两个交点: (1)求点B的坐标和一次函数的解析式; (2)求△AOB的面积; (3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围. |
22. 难度:中等 | |
某公司研制出一种新颖的家用小电器,每件的生产成本为18元,经市场调研表明,按定价40元出售,每日可销售20件.为了增加销量,每降价1元,日销售量可增加2件.问将售价定为多少元时,才能使日利润最大?求最大利润. |
23. 难度:中等 | |
在直角梯形ABCD中.AD=7 AB=2 DC=3 P为AD上一点,以P、A、B的顶点的三角形与P、D、C为顶点的三角形相似,那么这样的点P有几个?为什么? |
24. 难度:中等 | |
如图,已知:AB是⊙O的弦,D为⊙O上一点,DC⊥AB于C,DM平分∠CDO.求证:M是弧AB的中点. |
25. 难度:中等 | |
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C. (1)请完成如下操作: ①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD. (2)请在(1)的基础上,完成下列问题: ①写出点的坐标:C______、D______; ②⊙D的半径=______ |
26. 难度:中等 | |
已知二次函数的图象与x轴交于B,C两点(点B在点C的左边),与y轴交于点A,E,F分别是线段AB,AC上的点,且OE⊥OF (1)求A,B,C三点的坐标 (2)猜测△EOF是什么三角形,并证明你的猜测 (3)若EF与OA交于点G,试探究∠AEO与∠AGF的关系,结论:∠AEO______∠AGF(填上>,<,=),并请证明 (3)当点E,F分别在线段AB,AC上运动时,四边形AEOF的面积是否发生变化?若不变,请说明理由,若变化,请求其值的变化范围. |