1. 难度:中等 | |
下面计算正确的是( ) A. B. C. D. |
2. 难度:中等 | |
某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( ) A.289(1-x)2=256 B.256(1-x)2=289 C.289(1-2x)2=256 D.256(1-2x)2=289 |
3. 难度:中等 | |
关于x的一元二次方程x2+(m-2)x+m+1=0有两个相等的实数根,则m的值是( ) A.0 B.8 C.4±2 D.0或8 |
4. 难度:中等 | |
如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( ) A. B. C. D. |
5. 难度:中等 | |
四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有( ) A.1组 B.2组 C.3组 D.4组 |
6. 难度:中等 | |
如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( ) A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1) |
7. 难度:中等 | |
如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( ) A.4 B.8 C.16 D. |
8. 难度:中等 | |
如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论: ①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF. 其中正确的结论( ) A.只有①② B.只有①③ C.只有②③ D.①②③ |
9. 难度:中等 | |
如图,圆锥的底面半径OB=10cm,它的侧面展开图的扇形的半径AB=30cm,则这个扇形圆心角α的度数是 . |
10. 难度:中等 | |
要使式子有意义,则a的取值范围为 . |
11. 难度:中等 | |
如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是 . |
12. 难度:中等 | |
实数范围内分解因式:2x4-8= . |
13. 难度:中等 | |
已知一组数据x1,x2,x3…的标准差为2,那么另一组数据3x1-1,3x2-1,3x3-1,…的方差 . |
14. 难度:中等 | |
木工师傅可以用角尺测量并计算出圆的半径r,用角尺的较短边紧靠⊙O,并使较长边与⊙O相切于点C,假设角尺的较长边足够长,角尺的顶点为B,较短边AB=8cm,若读得BC长为acm,则用含a的代数式表示r为 . |
15. 难度:中等 | |
在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为 . |
16. 难度:中等 | |
如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 . |
17. 难度:中等 | |
如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是 . |
18. 难度:中等 | |
如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为10π,则弦AB的长为 . |
19. 难度:中等 | |
(1)计算:-(π+3)-cos30°++|-1| (2)解方程:2(x+3)2=x+3. |
20. 难度:中等 | |
先化简,再求值:,其中a=2-. |
21. 难度:中等 | ||||||||||||||||
王华、张伟两位同学九年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示: (1)根据上图中提供的数据填写下表:
(3)如果要从这两个同学选一位去参加数学竞赛,你可以给老师一些建议吗? |
22. 难度:中等 | |
商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答: (1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示); (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? |
23. 难度:中等 | |
如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F. (1)求证:△ABF≌△ECF; (2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形. |
24. 难度:中等 | |
日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5°方向,海检船以21海里/时 的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9°方向,求此时海检船所在B处与城市P的距离? (参考数据:,,,) |
25. 难度:中等 | |
如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC. (1)求证:CA是圆的切线; (2)若点E是BC上一点,已知BE=6,tan∠ABC=,tan∠AEC=,求圆的直径. |
26. 难度:中等 | |
如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC,延长EC到点P,连接PB.使PB=PE. (1)在以下5个结论中:一定成立的是______(只需将结论的代号填人题中的横线上) ①=;②OF=CF;③BF=AF;④AC2=AE•AB;⑤PB是⊙O的切线. (2)若⊙O的半径为8cm.AE:EF=2:1.求弓形ACB的面积. |
27. 难度:中等 | |
数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少? 经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值. (1)请按照小明的思路写出求解过程. (2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由. |
28. 难度:中等 | |
已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过点C作⊙A的切线交x轴于点B(-4,0). (1)求切线BC的解析式; (2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标; (3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由. |