1. 难度:中等 | |
-3的绝对值是( ) A.3 B.-3 C. D. |
2. 难度:中等 | |
下列计算中,正确的是( ) A.x2+x4=x6 B.2x+3y=5xy C.(x3)2=x6 D.x6÷x3=x2 |
3. 难度:中等 | |
博鳌亚洲论坛期间,财政部公布的财政收支情况显示,今年一季度全国财政收入累计26125.74亿元,比去年增长3.31%,用科学记数法表示( )亿元.(保留三个有效数字) A.26.1×103 B.2.60×104 C.2.61×104 D.0.261×105 |
4. 难度:中等 | |
某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是( ) A.55(1+x)2=35 B.35(1+x)2=55 C.55(1-x)2=35 D.35(1-x)2=55 |
5. 难度:中等 | |
下列调查中,适宜采用全面调查(普查)方式的是( ) A.调查一批新型节能灯泡的使用寿命 B.调查日本福岛核电站核泄漏对我国空气污染情况 C.调查我市初中学生的视力情况 D.为保证“第八颗北斗星”导航卫星的成功发射,对其零部件进行检查 |
6. 难度:中等 | |
函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( ) A. B. C. D. |
7. 难度:中等 | |
如图所示的几何体的主视图是( ) A. B. C. D. |
8. 难度:中等 | |
同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6.下列事件中是必然事件的是( ) A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数和不小于2 C.两枚骰子朝上一面的点数均为偶数 D.两枚骰子朝上一面的点数均为奇数 |
9. 难度:中等 | |
若|x+2|+,则xy的值为( ) A.-8 B.-6 C.5 D.6 |
10. 难度:中等 | |
如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是( ) A.2 B.2+ C.4 D.4+2 |
11. 难度:中等 | |
函数中x的取值范围是 . |
12. 难度:中等 | |
分解因式a-ab2的结果是 . |
13. 难度:中等 | |
将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,上述记号就叫做2阶行列式.若=4,则x= . |
14. 难度:中等 | |
已知⊙O1的半径为3cm,⊙O2的半径为4cm,两圆的圆心距O1O2为7cm,则⊙O1与⊙O2的位置关系是 . |
15. 难度:中等 | |
按一定规律排列的一列数依次为,…,按此规律排列下去,这列数的第n个数是 .(n是正整数) |
16. 难度:中等 | |
在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为 . |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
解不等式组 |
19. 难度:中等 | |
近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P点的位置. |
20. 难度:中等 | |||||||||||||||
阅读对人成长的影响是很大的、希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:
(2)把统计表和条形统计图补充完整; (3)随机调查一名学生,恰好是最喜欢文学类图书的概率是多少? |
21. 难度:中等 | |
先化简,再求值:,其中. |
22. 难度:中等 | |
已知如图,点A(m,3)与点B(n,2)关于直线y=x对称,且都在反比例函数y=的图象上,点D的坐标为(0,-2). (1)求反比例函数的解析式; (2)若过B,D的直线与x轴交于点C,求sin∠DCO的值. |
23. 难度:中等 | |||||||||||||||
小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
(2)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率. |
24. 难度:中等 | |
如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形. (1)求证:四边形ABCD是菱形; (2)若∠AED=2∠EAD,求证:四边形ABCD是正方形. |
25. 难度:中等 | ||||||||||
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大? |
26. 难度:中等 | |
如图,直线y=-x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0). (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M,求四边形AOCM的面积; (3)有两动点D、E同时从点O出发,其中点D以每秒个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE的面积为S. ①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由; ②请求出S关于t的函数关系式,并写出自变量t的取值范围; ③设S是②中函数S的最大值,那么S=______. |