1. 难度:中等 | |
-5的绝对值是( ) A.5 B.-5 C. D.- |
2. 难度:中等 | |
下列立体图形中,侧面展开图是扇形的是( ) A. B. C. D. |
3. 难度:中等 | |
下列各数1,π,,,,,1.3131131113…(两个3之间依次多一个1)中无理数的个数有( ) A.1个 B.2个 C.3个 D.4个 |
4. 难度:中等 | |
下列运算正确的是( ) A.3a+2a=a5 B.a2•a3=a6 C.(a+b)(a-b)=a2-b2 D.(a+b)2=a2+b2 |
5. 难度:中等 | |
一个布袋里装有6个白球,若干个红球,这些球除颜色外都相同.从布袋里任意摸出一个球,是白球的概率为,则布袋里红球的个数为( ) A.1 B.2 C.3 D.4 |
6. 难度:中等 | |
某反比例函数的图象经过点(-2,3),则此函数图象也经过点( ) A.(2,-3) B.(-3,-3) C.(2,3) D.(-4,6) |
7. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
8. 难度:中等 | |
如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是( ) A.∠A=∠D B.CE=DE C.∠ACB=90° D.CE=BD |
9. 难度:中等 | |
下列命题,正确的是( ) A.如果|a|=|b|,那么a=b B.等腰梯形的对角线互相垂直 C.顺次连接四边形各边中点所得到的四边形是平行四边形 D.相等的圆周角所对的弧相等 |
10. 难度:中等 | |
如图,在四边形ABCD中,DC∥EF∥AB,EC∥AF,四个三角形的面积分别为S1,S2,S3,S4,若S2=1,S4=4,则S1+S3等于( ) A.2 B.2.5 C.3 D.3.5 |
11. 难度:中等 | |
分解因式:3x2-3= . |
12. 难度:中等 | |
2011年3月11日13:46日本发生了震惊世界的大地震,近期国际机构将日本核电事故等级上调至国际核能事件分级表(INES)中最严重的7级,据估算其向大气排放的放射性物质量约为630000太贝克,用科学记数法表示为: . |
13. 难度:中等 | |
五箱救灾物资的质量(单位:千克)分别为:19,20,21,22,19,则这五箱救灾物资的质量的众数是 ,中位数是 . |
14. 难度:中等 | |
某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是 平方米(结果保留π). |
15. 难度:中等 | |
将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为 . |
16. 难度:中等 | |
如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S4= . |
17. 难度:中等 | |
(1)计算: (2)解不等式组:. |
18. 难度:中等 | |
小英过生日,同学们为她设置了一个游戏:把三个相同的乒乓球分别标上了1、2、3,放进一个盒子摇匀,另外拿两个相同的乒乓球也分别标上1、2,放进另外一个盒子里.现从两个盒子分别抽出1个球,若两个球的数字之积为奇数,则小英唱歌,若两个球的数字之积为偶数,则小英跳舞.问:小英做哪种游戏概率大? |
19. 难度:中等 | |
已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF. (1)求证:AB=CF; (2)四边形ABFC是什么四边形,并说明你的理由. |
20. 难度:中等 | |||||||||||||||||||||||||||||||||
为了掌握八年级期末数学考试卷(满分120分)的命题质量与难度系数,备课组教师随机选取40份试卷进行抽样调查,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
(1)频数分布表中的a=______,b=______,c=______. (2)已知全校有50个班级(平均每班40人),若108分及以上为优秀,请你预计用这份模拟卷考试优秀的人数约为______个. (3)补充完整频数分布直方图. |
21. 难度:中等 | |
如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示. (1)求直线AB的解析式; (2)过原点O的直线把△ABO分成面积相等的两部分,直接写出这条直线的解析式. |
22. 难度:中等 | |
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4. (1)求证:△ABE∽△ABD; (2)求tan∠ADB的值. |
23. 难度:中等 | |
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题: (1)求y与x的关系式; (2)当x取何值时,y的值最大? (3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元? |
24. 难度:中等 | |
如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ的长为l,点P的横坐标为x. (1)求二次函数的解析式; (2)求l与x之间的函数关系式,并求出l的取值范围; (3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由. |