1. 难度:中等 | |
Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是( ) A.5cm B.15cm C.10cm D.2.5cm |
2. 难度:中等 | |
如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是( ) A.(1)(2)(3)(4) B.(4)(3)(1)(2) C.(4)(3)(2)(1) D.(2)(3)(4)(1) |
3. 难度:中等 | |
将方程x2-2x=1进行配方,可得( ) A.(x+1)2=2 B.(x-2)2=5 C.(x-1)2=2 D.(x-1)2=1 |
4. 难度:中等 | |
如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.△ABC三条中线的交点处 B.△ABC三条角平分线的交点处 C.△ABC三条高线的交点处 D.△ABC三条边的垂直平分线的交点处 |
5. 难度:中等 | |
在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是( ) A.15° B.30° C.50° D.65° |
6. 难度:中等 | |
如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是( ) A.一组对边平行而另一组对边不平行 B.对角线相等 C.对角线互相垂直 D.对角线互相平分 |
7. 难度:中等 | |
△ABC中,点O为∠ABC和∠ACB角平分线交点,则∠BOC与∠A的关系是( ) A.∠BOC=2∠A B.∠BOC=180°-∠A C.∠BOC=90°+∠A D.∠BOC=90°+∠A |
8. 难度:中等 | |
反比例函数的图象经过点(1,-2),则此函数关系式可表示为 . |
9. 难度:中等 | |
如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出它们的中点M,N.若测得MN=15m,则A,B两点间的距离为 m. |
10. 难度:中等 | |
如图,要使▱ABCD为菱形,需要添加的一个条件可以是 . |
11. 难度:中等 | |
如图,在▱ABCD中,AC、BD相交于点O,AO=6,BO=10,AC⊥CD,则CD= . |
12. 难度:中等 | |
众友药店的某药品原价每盒25元,该药店经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 . |
13. 难度:中等 | |
如图,在△ABC中∠A=90°,∠B=15°,DE垂直平分BC,垂足为D,交AB于E,AC=10cm,BE= cm. |
14. 难度:中等 | |
如图,等腰梯形ABCD中,AD∥BC,AB=CD,BC=10cm,AD=4cm,∠B=60°,那么腰长AB为 cm. |
15. 难度:中等 | |
如图,点P是反比例函数y=-图象上的一点,PD垂直于x轴于点D,则△POD的面积为 . |
16. 难度:中等 | |
一架长2.5m的梯子,斜立在一竖直的墙上,这时梯子底端距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯子底端将滑动了 m. |
17. 难度:中等 | |
如图所示,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144 m2,求甬路的宽度.若设甬路的宽度为xm,则x满足的方程为 . |
18. 难度:中等 | |
当x取何值时,代数式2x2-3x+6与代数式x2+10值相同? |
19. 难度:中等 | |
如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN. (1)指定路灯的位置(用点P表示); (2)在图中画出表示大树高的线段; (3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树. |
20. 难度:中等 | |
如图,在平行四边形ABCD中,BF=DE.求证:四边形AFCE是平行四边形. |
21. 难度:中等 | |
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场每天可多售5件.若商场平均每天要盈利1600元,每件衬衫应降价多少元? |
22. 难度:中等 | |
已知:如图,D是△ABC中BC边上一点,E是AD上的一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE. |
23. 难度:中等 | |
如图,平行四边形ABCD中,AB=8cm,BC=6cm,∠A=45°,点P从点A沿AB边向点B移动,点Q从点B沿BC边向点C移动,P、Q同时出发,速度都是1cm/s (1)P、Q移动几秒时,△PBQ为等腰三角形; (2)设S△PBQ=y,请写出y(cm2)与点P、Q的移动时间x(s)之间的函数关系式,并写出x的取值范围; (3)能否使S△PBQ=?若不能请说明理由,若能,也说明理由. |
24. 难度:中等 | |
(附加题)如图,在一块三角形区域土地ABC中,∠C=90°,AC=8,BC=6,底边AB上的高h=,现在要在△ABC内建造一个面积为12的矩形水池DEFG,如图的设计方案是使DE在AB边上,点G在AC边上,点F在BC边上. (1)求此方案中水池宽DG; (2)实际施工时(修建前),发现在AB边上距B点l.85的M处有一棵古老的大树,而这棵大树却又在矩形水池边DE上.为了保护这棵古树,请你另外设计一种方案,使三角形区域中也能修建一个面积为12的矩形水池,并且还能避开大树.(若总分超过100分,则此题超出分数不计入总分) |
25. 难度:中等 | |
方程(x+1)(x-2)=0的根是( ) A.x=-1 B.x=2 C.x1=1,x2=-2 D.x1=-1,x2=2 |
26. 难度:中等 | |
下列说法中正确的是( ) A.平行四边形的对角线互相平分且相等 B.矩形的对角线互相垂直且平分 C.菱形的对角线互相垂直且相等 D.正方形的对角线互相垂直平分且相等 |
27. 难度:中等 | |
“圆柱与球的组合体”如右图所示,则它的三视图是( ) A. B. C. D. |