1. 难度:中等 | |
在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=( ) A. B. C. D. |
2. 难度:中等 | |
如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为( ) A.70° B.35° C.30° D.20° |
3. 难度:中等 | |
如图,在菱形ABCD中,DE⊥AB,垂足是点E,,则菱形ABCD的周长是( ) A.20 B.30 C.40 D.50 |
4. 难度:中等 | |
如果两点P1(1,y1)和P2(2,y2)都在反比例函数的图象上,那么( ) A.y2<y1<0 B.y1<y2<0 C.y2>y1>0 D.y1>y2>0 |
5. 难度:中等 | |
如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为( )m. A.8.8 B.10 C.12 D.14 |
6. 难度:中等 | |
近年来,全国房价不断上涨,某县2010年4月份的房价平均每平方米为3600元,比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x,则关于x的方程为( ) A.(1+x)2=2000 B.2000(1+x)2=3600 C.(3600-2000)(1+x)=3600 D.(3600-2000)(1+x)2=3600 |
7. 难度:中等 | |
方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A.12 B.12或15 C.15 D.不能确定 |
8. 难度:中等 | |
如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA. 下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形. 其中,正确的有( ) 个. A.1 B.2 C.3 D.4 |
9. 难度:中等 | |
如图,函数y1=x-1和函数的图象相交于点M(2,m),N(-1,n),若y1>y2,则x的取值范围是( ) A.x<-1或0<x<2 B.x<-1或x>2 C.-1<x<0或0<x<2 D.-1<x<0或x>2 |
10. 难度:中等 | |
如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的正弦值为( ) A. B. C. D. |
11. 难度:中等 | |
如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是( ) A.BF=DF B.四边形AECD是等腰梯形 C.S△FAD=2S△FBE D.∠AEB=∠ADC |
12. 难度:中等 | |
附加题:如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( ) A. B. C. D. |
13. 难度:中等 | |
两个相似三角形的对应边的比为5:7,其中一个三角形的周长比另一个三角形的周长小4cm,则这两个三角形的周长分别为 _cm. |
14. 难度:中等 | |
如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为 . |
15. 难度:中等 | |
如图所示的两个三角形是位似图形,它们的位似中心是点 . |
16. 难度:中等 | |
一个圆锥形的蛋筒,底面圆直径为6cm,母线长为10cm,把它的包装纸展开,侧面展图的面积为 cm2(不计折叠部分). |
17. 难度:中等 | |||||||||||||||
我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量(件)与售价 (元)之间存在着如下表所示的关系.
|
18. 难度:中等 | |
如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为 . |
19. 难度:中等 | |
(1)解下列方程:3x2+7x+2=0 (2)计算:sin245°+tan30°sin60°-2cos30°. |
20. 难度:中等 | |
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面; (2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. |
21. 难度:中等 | |
要对一块长60米,宽40米的矩形荒地ABCD进行绿化和硬化、设计方案如图所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽. |
22. 难度:中等 | |
如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC. (1)山坡坡角(即∠ABC)的度数等于______度; (2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732). |
23. 难度:中等 | |
近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题: (1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围; (2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生? (3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井? |
24. 难度:中等 | |
如图所示, (1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明; (2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由; (3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β. |
25. 难度:中等 | |
阅读下列材料: 小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题: (1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可); (2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连接AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果). |
26. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动. (1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由. |