1. 难度:中等 | |
在平面直角坐标系内P点的坐标(cos30°,tan45°),则P点关于x轴对称点P′的坐标为( ) A. B. C. D. |
2. 难度:中等 | |
下列命题:(1)半圆是中心对称图形;(2)相等的圆心角所对的弧相等;(3)平分弦的直径垂直于弦;(4)圆内两条非直径的相交弦不能互相平分,其中正确的有( ) A.3个 B.2个 C.1个 D.0个 |
3. 难度:中等 | |
二次函数的图形只在第三、四象限中,则m为( ) A.m<0 B.m>0 C.m=-2 D.m=1 |
4. 难度:中等 | |
已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2009的值为( ) A.2007 B.2008 C.2009 D.2010 |
5. 难度:中等 | |
如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于( ) A.80° B.50° C.40° D.20° |
6. 难度:中等 | |
如图,⊙B的半径为4cm,∠MBN=60°,点A、C分别是射线BM、BN上的动点,且直线AC⊥BN.当AC平移到与⊙B相切时,AB的长度是( ) A.8cm B.6cm C.4cm D.2cm |
7. 难度:中等 | |
已知圆的两弦AB、CD的长是方程x2-42x+432=0的两根,且AB∥CD,又知两弦之间的距离为3,则圆的半径是( ) A.12 B.15 C.12或15 D.21 |
8. 难度:中等 | |
如图,⊙O的半径为1,点A是半圆上的一个三等分点,点B是弧的中点,P是直径MN上的一个动点,则PA+PB的最小值为( ) A.1 B. C. D. |
9. 难度:中等 | |
某同学从右图二次函数y=ax2+bx+c的图象中,观察得出了下面的五个结论: ①c=0,②函数的最小值为-3,③a-b+c<0,④4a+b=0,⑤b2-4ac>0.你认为其中正确的命题有( ) A.5个 B.4个 C.3个 D.2个 |
10. 难度:中等 | |
如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( ) A. B. C. D. |
11. 难度:中等 | |
二次函数的图象向右平移2个单位后,再向上平移5个单位,平移后的图象的二次函数解析式为 . |
12. 难度:中等 | |
已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为 . |
13. 难度:中等 | |
二次函数的图象开口向上且过原点,则a= . |
14. 难度:中等 | |
在△ABC中,,则∠A= . |
15. 难度:中等 | |
如图,已知AB是⊙O的直径,BC为弦,∠ABC=30度.过圆心O作OD⊥BC交BC于点D,连接DC,则∠DCB= 度. |
16. 难度:中等 | |
如图,PA、PB与⊙O相切,切点分别为A、B.PA=3,∠P=60°,若AC为⊙O的直径,则圆中阴影部分的面积为 . |
17. 难度:中等 | |
已知:如图∠ABC内接于⊙O,BD⊥半径OA于D.BD=4.8,sinC=,则⊙O的半径为 . |
18. 难度:中等 | |
如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是 . |
19. 难度:中等 | |
. |
20. 难度:中等 | |
如图,△ABC中,AC=6,BC=8,∠C=90°,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长. |
21. 难度:中等 | |
如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上一点,且AD∥OC. (1)求证:△ADB∽△OBC; (2)若AB=2,BC=,求AD的长.(结果保留根号) |
22. 难度:中等 | |
已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+(1+)x+c经过A(2,0),B(1,n),C(0,2)三点. (1)求抛物线的解析式; (2)求线段BC的长; (3)求∠OAB的度数. |
23. 难度:中等 | |
如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元. (1)当FG长为多少米时,种草的面积与种花的面积相等? (2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少? |
24. 难度:中等 | |
如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点. (1)判断△ABC的形状,并证明你的结论; (2)求证:; (3)若∠ABP=15°,△ABC的面积为4,求PC的长. |
25. 难度:中等 | |
已知抛物线y=-x2+mx-n的对称轴为x=-2,且与x轴只有一个交点. (1)求m,n的值; (2)把抛物线沿x轴翻折,再向右平移2个单位,向下平移1个单位,得到新的抛物线C,求新抛物线C的解析式; (3)已知P是y轴上的一个动点,定点B的坐标为(0,1),问:在抛物线C上是否存在点D,使△BPD为等边三角形?若存在,请求出点D的坐标;若不存在,请说明理由. |
26. 难度:中等 | |
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B. (1)求抛物线的解析式; (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标; (3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标. |