1. 难度:中等 | |
H1N1病毒非常微小,其半径约为0.00000016m,用科学记数法可以表示为( ) A.1.6×106m B.1.6×10-6m C.1.6×10-7m D.1.6×10-8m |
2. 难度:中等 | |
下列运算正确的是( ) A.-= B.(-6x6)÷(-2x2)=3x3 C.2a-3a=-a D.(x-2)2=x2-4 |
3. 难度:中等 | |
已知关于x的一元二次方程x2-2x+α=0有实根,则实数α的取值范围是( ) A.α≤1 B.α<1 C.α≤-1 D.α≥1 |
4. 难度:中等 | |
已知两个相似三角形的对应中线比为1:3,较大的三角形的周长为18cm,则较小的三角形的周长为( ) A.6cm B.9m C.6cm D.54cm |
5. 难度:中等 | |
给出下面四个命题:(1)一组对边平行的四边形是梯形;(2)一条对角线平分一个内角的平行四边形是菱形;(3)两条对角线互相垂直的矩形是正方形;(4)圆的切线垂直于半径,其中真命题的个数有( ) A.0个 B.1个 C.2个 D.3个 |
6. 难度:中等 | |
美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ) A.4cm B.6cm C.8cm D.10cm |
7. 难度:中等 | |
如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( ) A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90° |
8. 难度:中等 | |
样本数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是( ) A.8 B.9 C.10 D.12 |
9. 难度:中等 | |
如图,AB∥DE,∠E=65°,则∠B+∠C= . |
10. 难度:中等 | |
分解因式:a3-4a2+4a= . |
11. 难度:中等 | |
方程组的解是 . |
12. 难度:中等 | |
关于x的不等式组的解集是x>-1,则m= . |
13. 难度:中等 | |
小丽家下个月的开支预算如图所示.如果用于教育的支出是150元,则她家下个月的总支出为 元. |
14. 难度:中等 | |
用直径为80cm的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是 cm. |
15. 难度:中等 | |
如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°,圆心C的坐标是 . |
16. 难度:中等 | |
在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为 . |
17. 难度:中等 | |
计算:(1-2)-2-1+|-3|-sin30°. |
18. 难度:中等 | |
先化简,再求值:,其中x=-3. |
19. 难度:中等 | |
某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个. (1)用“列表法”或“树状图法”表示所有可能出现的结果; (2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少? |
20. 难度:中等 | |
汶川地震后,某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:≈1.41,≈1.73) |
21. 难度:中等 | |
已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2. (1)求该反比例函数的解析式; (2)求直线AB的解析式. |
22. 难度:中等 | |
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB. (1)求证:PB是⊙O的切线; (2)已知PA=,BC=1,求⊙O的半径. |
23. 难度:中等 | |
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC. (1)求证:BG=FG; (2)若AD=DC=2,求AB的长. |
24. 难度:中等 | |
为了缓解市区日益拥堵的交通状况,长沙市地铁建设工程指挥部对长沙地铁2号线五一广场工程进行招标,接到了甲、乙两个工程队的指标书,从指标书中得知:甲队单独完成这项工程所需的时间是乙队单独完成这项工程所需的时间的3倍,若由甲队先做2个月,剩下的工程由甲、乙两队合作4个月可以完成. (1)求甲、乙两队单独完成这项工程各需几个月? (2)已知甲队每月的施工费用是76万元,乙队每月的施工费用是164万元,工程预算的施工费用为1000万元,为缩短工期以减少对交通的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由. |
25. 难度:中等 | |
已知某种水果的批发单价与批发量的函数关系如图1所示. (1)请说明图中①、②两段函数图象的实际意义; (2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果; (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大. |
26. 难度:中等 | |
如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,OC=4,AO=2OC,且抛物线对称轴为直线x=-3. (1)求该抛物线的函数表达式; (2)己知矩形DEFG的一条边DE在线段AB上,顶点F、G分别在AC、BC上,设OD=m,矩形DEFG的面积为S,当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使,求出此时点M的坐标; (3)若点Q是抛物线上一点,且横坐标为-4,点P是y轴上一点,是否存在这样的点P,使得△BPQ是直角三角形?如果存在,求出点P的坐标;若不存在,请说明理由. |