相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
北京市2019届九年级数学12月月考试卷
一、单选题
详细信息
1. 难度:简单

抛物线y=(x-2)2+3的顶点坐标是

A. (-2,3)    B. (2,3)    C. (2,-3)    D. (-3,2)

 

详细信息
2. 难度:简单

如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则cosA的值是( )

A.     B.     C.     D.

 

详细信息
3. 难度:中等

如图,在ABC中,∠AED=B,DE=6,AB=10,AE=8,则BC的长度为(  )

A.     B.     C. 3    D.

 

详细信息
4. 难度:简单

如图,在△OAB绕点O逆时针旋转70°得到△OCD,若∠A=100°,∠D=50°,则∠AOD的度数是(  )

A. 20°    B. 30°    C. 40°    D. 50°

 

详细信息
5. 难度:简单

如图,在ABC中,点D、E分别在AB、AC上,DEBC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为(  )

A.     B.     C.     D. 2

 

详细信息
6. 难度:中等

已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=-的图象上三点,且x1<0<x2<x3,则y1,y2,y3的大小关系是(    )

A. y1<0<y2<y3    B. y1>0>y2>y3    C. y1<0<y3<y2    D. y1>0>y3>y2

 

详细信息
7. 难度:中等

如图,在平面直角坐标系xOy中,绕点P旋转得到,则点P的坐标为

A. 01)    B. 1-1)    C. 0-1)    D. 10

 

详细信息
8. 难度:简单

如图,在平面直角坐标系中, ,一次函数与线段有公共点,则的取值范围是(    

A.     B.     C.     D.

 

二、填空题
详细信息
9. 难度:中等

方程x(x-2)=x的根是__________

 

详细信息
10. 难度:中等

在反比例函数y=的图象的每一支上,y都随x的增大而减小,则k的取值范围是________

 

详细信息
11. 难度:中等

如图抛物线的对称轴为PQ是抛物线与x轴的两个交点若点P的坐标为40),则点Q的坐标为__________

 

详细信息
12. 难度:中等

已知扇形的圆心角为120°,面积为12π,则扇形的半径是 ______

 

详细信息
13. 难度:中等

如图,AB是⊙O的直径,DC与⊙O相切于点C,若∠D=30°,OA=2,则CD= ______

 

详细信息
14. 难度:中等

已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.

 

详细信息
15. 难度:中等

在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为 ______

 

详细信息
16. 难度:中等

如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果BC•AB=AC2,那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图2,在“附中博识课程中”,小白菜们沿着紫禁城的中轴线,从内金水桥走到了太和殿,领略了古代建筑的宏伟.太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,设太和门到太和殿之间的距离为x丈,要求x,则可列方程为________________

 

三、解答题
详细信息
17. 难度:中等

阅读下面材料:

在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BAC.求作:∠BAC的角平分线AP.

小欣的作法如下:

(1)如图,在平面内任取一点O;

(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;

(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;

(4)过点P作射线AP.

所以射线AP为所求

根据小欣设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵OPDE

=______(________________________)(填推理的依据),

∴∠BAP=______ (________________________)(填推理的依据).

 

详细信息
18. 难度:简单

已知m是方程的一个实数根,求代数式的值.

 

详细信息
19. 难度:中等

如图,在ABC中,∠B=90°,AB=4,BC=2,以AC为边作ACE,ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:ABC∽△CED.

 

详细信息
20. 难度:中等

如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).

(1)求反比例函数的解析式;

(2)若点P在直线OA上,且满足PA=2OA,直接写出点P的坐标.

 

详细信息
21. 难度:困难

如图,A,B,C三点在⊙O,直径BD平分∠ABC,过点DDE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.

(1)求证:DF是⊙O的切线;

(2)连接AF交DE于 M,若AD=4,DE=5,求 EM 的长.

 

详细信息
22. 难度:困难

已知关于x的方程kx2+(3k+1)x+3=0.

(1)求证:无论k取任何实数时,方程总有实数根;

(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值;

(3)在(2)的条件下,设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.

 

详细信息
23. 难度:中等

问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.


证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG
∵M是的中点,
∴MA=MC
……
请按照上面的证明思路,写出该证明的剩余部分;
实践应用:
(1)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为BE=CE+ACBE=CE+AC;
(2)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为上一点,连接DB,∠ACD=45°,AE⊥CD于点E,△BCD的周长为4+2,BC=2,请求出AC的长.

 

详细信息
24. 难度:困难

定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.

例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.

(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;

(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;

(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.