1. 难度:困难 | |
已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0, )的下方,那么m的取值范围是( ) A. B. C. D. 全体实数
|
2. 难度:中等 | |
二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A. 抛物线开口向下 B. 抛物线经过点(2,3) C. 抛物线的对称轴是直线x=1 D. 抛物线与x轴有两个交点
|
3. 难度:简单 | |
对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为 A.1 B.2 C.3 D.4
|
4. 难度:简单 | |
抛物线y=2x2+1是由抛物线y=2x2怎样平移得到的( ) A. 向上平移2个单位 B. 向下平移2个单位 C. 向上平移1个单位 D. 向下平移1个单位
|
5. 难度:中等 | |
如图,在直角坐标系中,一次函数y=mx+n(m≠0)和二次函数y=ax2+bx+c(a≠0)的图象交于A(﹣3,0)和B两点,抛物线与x轴交于A、C两点,且C的横坐标在0到1之间(不含端点),下列结论正确的是( ) A. abc<0 B. 3a﹣b>0 C. 2a﹣b+m<0 D. a﹣b>2m﹣2
|
6. 难度:中等 | |
如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有( ). A. 1个 B. 2个 C. 3个 D. 4个
|
7. 难度:简单 | |
在平面直角坐标系中,抛物线y=-(x+1)2-的顶点是( ) A. (-1,-) B. (-1,) C. (1,-) D. (1,)
|
8. 难度:简单 | |
在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向下、向左平移2个单位,那么在新坐标系下抛物线的解析式是( ) A. y=2(x-2)2+2 B. y=2(x+2)2-2 C. y=2(x-2)2-2 D. y=2(x+2)2+2
|
9. 难度:简单 | |
二次函数y=-2(x-4)2-5的开口方向、对称轴分别是( ) A. 开口向上、直线x=-4 B. 开口向上、直线x=4 C. 开口向下、直线x=-4 D. 开口向下、直线x=4
|
10. 难度:简单 | |
已知:抛物线y=a(x+1)2的顶点为A,图象与y轴负半轴交点为B,且OB=OA,若点C(-3,b)在抛物线上,则△ABC的面积为( ) A. 3 B. 3.5 C. 4 D. 4.5
|
11. 难度:简单 | |
对于二次函数y=ax2,已知当x由1增加到2时,函数值减少4,则常数a的值是__________.
|
12. 难度:中等 | |
某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0)。未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元。通过市场调研发现,该时装单价每降1元,每天销量增加4件。在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为_____________。
|
13. 难度:中等 | |
不等式x2+ax+b≥0(a≠0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为_______.
|
14. 难度:简单 | |
函数y=ax2+bx+c的三项系数分别为a、b、c,则定义[a,b,c]为该函数的“特征数”.如:函数y=x2+3x-2的“特征数”是[1,3,-2],函数y=-x+4的“特征数”是[0,-1,4].如果将“特征数”是[2,0,4]的函数图象向左平移3个单位,得到一个新的函数图象,那么这个新图象相应的函数表达式是__________________.
|
15. 难度:中等 | |
如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=-x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为________________.
|
16. 难度:中等 | |
如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD、AB平行,则矩形框架ABCD的最大面积为______________m2.
|
17. 难度:简单 | |
抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________.
|
18. 难度:中等 | |
已知边长为2的正方形在平面直角坐标系中的位置如图所示,其顶点A、B、C在图中的抛物线上,则此抛物线的解析式为______________________.
|
19. 难度:中等 | |
如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为______________.
|
20. 难度:中等 | |
如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0), (1)求m的值及抛物线的顶点坐标. (2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
|
21. 难度:中等 | |
已知二次函数y=x2-4x+3. (1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况; (2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
|
22. 难度:中等 | |
如图是抛物线形拱桥,已知水位在AB位置时,水面宽4米,水位上升3米,就达到警戒线CD,这时水面CD宽4米.若洪水到来时水位以每小时0.25米的速度上升,那么水过警戒线后多少小时淹到拱桥顶?
|
23. 难度:中等 | |
东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为,且其日销售量y(kg)与时间t(天)的关系如表: (1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少? (2)问哪一天的销售利润最大?最大日销售利润为多少? (3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.
|
24. 难度:简单 | |
如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,△ABC为等边三角形,求S△ABC.
|
25. 难度:困难 | |
(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m. (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离; (2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过? (3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
|
26. 难度:中等 | |
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴正半轴、y轴的负半轴上,二次函数y=(x−h)2+k的图象经过B、C两点. (1)求该二次函数的顶点坐标; (2)结合函数的图象探索:当y>0时x的取值范围; (3)设m<,且A(m,y1),B(m+1,y2)两点都在该函数图象上,试比较y1、y2的大小,并简要说明理由.
|
27. 难度:中等 | |
如图,抛物线y=x2+bx+c经过A(-1,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B. (1)求此抛物线的解析式及顶点坐标; (2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式; (3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.
|
28. 难度:中等 | |
如图,抛物线与x轴交于A,B两点,与直线相交于B,C两点,连结A,C两点。 (1)写出直线BC的解析式 (2)求△ABC的面积
|