相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
广东省中山市四中2019届九年级上学期期末考试数学试卷
一、单选题
详细信息
1. 难度:简单

下列图形中,不是中心对称图形的是(  )

A.  B.  C.  D.

 

详细信息
2. 难度:中等

若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,则x1,x2,x3的大小关系是(  )

A. x1<x2<x3    B. x2<x1<x3    C. x2<x3<x1    D. x3<x2<x1

 

详细信息
3. 难度:中等

掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是(  )

A. 1    B.     C.     D. 0

 

详细信息
4. 难度:中等

用配方法解方程x2+2x30,下列配方结果正确的是(    )

A. (x1)22 B. (x1)24

C. (x+1)22 D. (x+1)24

 

详细信息
5. 难度:简单

若要得到函数y=(x+1)2+2的图象,只需将函数yx2的图象(  )

A. 先向右平移1个单位长度,再向上平移2个单位长度

B. 先向左平移1个单位长度,再向上平移2个单位长度

C. 先向左平移1个单位长度,再向下平移2个单位长度

D. 先向右平移1个单位长度,再向下平移2个单位长度

 

详细信息
6. 难度:中等

⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d(  )

A. d<4    B. d=4    C. d>4    D. 0≤d<4

 

详细信息
7. 难度:中等

已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是(  )

A. (﹣2,0)    B. (0,﹣2)    C. (0,﹣3)    D. (﹣3,0)

 

详细信息
8. 难度:中等

如图,△ABC 内接于⊙O,∠A=68°,则∠OBC 等于(    )

A. 22°    B. 26°    C. 32°    D. 34°

 

详细信息
9. 难度:简单

如图,四边形ABCD为正方形,点OAC、BD的交点,则三角形COD绕点O经过下列哪种旋转可以得到三角形DOA(  )

A. 顺时针旋转45°    B. 顺时针旋转90°    C. 逆时针旋转45°    D. 逆时针旋转90°

 

详细信息
10. 难度:中等

在同一平面直角坐标系中反比例函数yb0)与二次函数yax2+bxa0)的图象大致是(  )

A.     B.

C.     D.

 

二、填空题
详细信息
11. 难度:中等

已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____

 

详细信息
12. 难度:简单

m是方程2x2+3x10的根,则式子4m2+6m+2018的值为_____

 

详细信息
13. 难度:中等

在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有_____个.

 

详细信息
14. 难度:中等

已知抛物线的对称轴是xn,若该抛物线与x轴交于(10),(30)两点,则n的值为_____

 

详细信息
15. 难度:中等

如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点Cx轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____

 

详细信息
16. 难度:中等

如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1CD交于点O,则图中阴影部分的面积为_____

 

三、解答题
详细信息
17. 难度:简单

解方程:x2﹣5x+3=0.

 

详细信息
18. 难度:中等

如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3)请解答下列问题:

(1)△ABC与△A1B1C1关于原点O成中心对称,画出△A1B1C1并直接写出点C的对应点C1的坐标;

(2)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2,并求出点A旋转至A2经过的路径长.

 

详细信息
19. 难度:中等

若关于x的一元二次方程(m﹣2)x2+2x﹣1=0.

(1)若方程有一根是1,求m的值;

(2)若该方程有实数根,求m的取值范围.

 

详细信息
20. 难度:中等

一袋中装有质地大小形状完全相同的红、黄、蓝球各一个,每次任取一个,有放回地取3次,求下列事件的概率:

(1)A=“三次都取到红球”;

(2)B=“三次取到颜色相同的球”;

(3)C=“三次取得颜色均不同的球”

 

详细信息
21. 难度:中等

已知⊙O的直径AB、CD互相垂直,弦AECDF,若⊙O的半径为R,

求证:AE•AF=2R2

 

详细信息
22. 难度:中等

温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.

(1)根据信息填表

产品种类

每天工人数(人)

每天产量(件)

每件产品可获利润(元)

 

 

15

 

 

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

 

详细信息
23. 难度:中等

在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数yk0)图象交于AB两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣23).

1)求一次函数和反比例函数解析式.

2)若将点C沿y轴向下平移4个单位长度至点F,连接AFBF,求△ABF的面积.

3)根据图象,直接写出不等式﹣x+b的解集.

 

详细信息
24. 难度:中等

数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

 

详细信息
25. 难度:中等

已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.