相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
吉林省辽源市2019届九年级(上)期末数学试卷
一、单选题
详细信息
1. 难度:简单

下列图案是中心对称图形的是(  )

A.     B.

C.     D.

 

详细信息
2. 难度:中等

M(a2a)在反比例函数y的图象上,那么a的值是(    )

A. 4 B. 4 C. 2 D. ±2

 

详细信息
3. 难度:中等

已知函数则使y=k成立的x值恰好有三个,则k的值为(    )

A.0  B.1  C.2  D.3

 

 

详细信息
4. 难度:中等

如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为(  )

A. 12m    B. 13.5m    C. 15m    D. 16.5m

 

二、填空题
详细信息
5. 难度:中等

如图,有一电路AB是由图示的开关控制,闭合abcde五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是

A.     B.     C.     D.

 

三、单选题
详细信息
6. 难度:中等

三角板ABC中,∠ACB=90°,B=30°,AC=2,三角板绕直角顶点C逆时针旋转,当点A的对应点A落在AB边的起始位置上时即停止转动,则B点转过的路径长为(  )

A. π    B. π    C.     D.

 

四、填空题
详细信息
7. 难度:简单

在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是_____.

 

详细信息
8. 难度:简单

x1是关于x的一元二次方程ax2+bx+c0a≠0)的一个根,则2007a+b+c)=_____

 

详细信息
9. 难度:中等

关于的方程有两个不相等的实数根,那么的取值范围是__________

 

详细信息
10. 难度:简单

若二次函数y2x24kx+1.当xl时,yx的增大而减小,则k的取值范围是_____

 

详细信息
11. 难度:中等

.如图圆锥侧面展开得到扇形此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______

 

详细信息
12. 难度:中等

如图,ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是_____

 

详细信息
13. 难度:中等

如图,在x轴的正半轴上依次截取OA1A1A2A2A3A3A4A4A5,过点A1A2A3A4A5分别作x轴的垂线与反比例函数yx≠0)的图象相交于点P1P2P3P4P5,得直角三角形OP1A1A1P2A2A2P3A3A3P4A4A4P5A5,并设其面积分别为S1S2S3S4S5,则S10_____.(n≥1的整数)

 

详细信息
14. 难度:困难

如图,抛物线y=ax2经过矩形OABC的顶点B,交对角线AC于点D.则的值为_____

 

五、解答题
详细信息
15. 难度:简单

用公式法解方程:.

 

详细信息
16. 难度:中等

如图,已知点B为弧AC的中点,BDACD

1)用直尺和圆规作出弧AC所在圆的圆心O

2)若弦AC6BD2,求该圆的半径.

 

详细信息
17. 难度:中等

如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)

(1)转动转盘一次,求转出的数字是-2的概率;

(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

 

详细信息
18. 难度:中等

校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.

(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.

(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.

 

详细信息
19. 难度:中等

在如图所示的方格中,每个小正方形的边长为1,点ABC在方格纸中小正方形的顶点上.

1)按下列要求画图:

过点ABC的平行线DF

过点CBC的垂线MN

将△ABCA点顺时针旋转90°.

2)计算△ABC的面积.

 

详细信息
20. 难度:简单

一名同学推铅球,铅球出手后行进过程中离地面的高度(单位:)与水平距离(单位:)近似满足函数关系,其图象如图所示.已知铅球落地时的水平距离为

(1)求铅球出手时离地面的高度;

(2)在铅球行进过程中,当它离地面的高度为时,求此时铅球的水平距离.

 

详细信息
21. 难度:中等

如图,在平面直角坐标系xOy中,直线yx+b与双曲线y相交于AB两点,

已知A(2,5).求:

(1)bk的值;

(2)△OAB的面积.

 

详细信息
22. 难度:中等

如图,AC是O的直径,PA切O于点A,点B是O上的一点,且∠BAC=30°,∠APB=60°.

(1)求证:PB是O的切线;

(2)O的半径为2,求弦AB及PA,PB的长.

 

详细信息
23. 难度:中等

两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:

(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.

(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出 sinα的值.

 

详细信息
24. 难度:困难

如图,AB是⊙O的直径,弦CDAB,垂足为H,连结AC,过弧BD上一点EEGACCD的延长线于点G,连结AECD于点F,且EGFG,连结CE

1)求证:ECF∽△GCE

2)求证:EG是⊙O的切线;

3)延长ABGE的延长线于点M,若tanGAH3,求EM的值.

 

详细信息
25. 难度:简单

问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足          关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

 

详细信息
26. 难度:困难

如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.