1. 难度:中等 | |
下列运算错误的是( ) A. x3•x2=x5 B. 10﹣3=0.003 C. =5 D. (a3)4=a12
|
2. 难度:简单 | |
如图所示的圆柱体从正面看得到的图形可能是( ) A. B. C. D.
|
3. 难度:简单 | |
世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A. 5.6×10﹣1 B. 5.6×10﹣2 C. 5.6×10﹣3 D. 0.56×10﹣1
|
4. 难度:中等 | |
下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.
|
5. 难度:中等 | |
在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是( )个. A. 12 B. 24 C. 36 D. 48
|
6. 难度:中等 | |
如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为( ) A. 5cm B. 5cm C. 5 cm D. 6cm
|
7. 难度:中等 | |
如图,在平面直角坐标系中,菱形OABC的一边OA在x轴正半轴上,OB=2,∠C=120°.将菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,则点B′的坐标为( ) A. (2,) B. (2,﹣) C. (,) D. (,﹣)
|
8. 难度:中等 | |
二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有: A. 4个 B. 3个 C. 2个 D. 1个
|
9. 难度:中等 | |
计算:|﹣2|﹣+()﹣1+tan45°=_____.
|
10. 难度:中等 | |
5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为_____.
|
11. 难度:简单 | |
如图,点P在反比例函数y=的图象上.若矩形PMON的面积为4,则k=_____.
|
12. 难度:中等 | |
在矩形纸片ABCD中,AB=6,BC=8.将矩形纸片折叠,使点C与点A重合,则折痕的长是______.
|
13. 难度:中等 | |
如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为_____.
|
14. 难度:中等 | |
如图,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),对角线PM与ON交于点B,则点B的坐标为_____.
|
15. 难度:中等 | |
如图,△ABC是一块三角形木料,现要在该木料中切割出一个圆形模板,要求圆形模板经过木料边缘AB上的点P,且与边缘AB,AC都相切,请在图中画出符合条件的圆形模板.
|
16. 难度:中等 | |
(1)解不等式组: (2)化简:(﹣2)•.
|
17. 难度:中等 | |
对一批西装质量抽检情况如下表: (1)从这批西装中任选一套,是次品的概率是多少? (2)若要销售这批西装2000件,为了方便购买了次品西装的顾客前来调换,至少应进多少件西装?
|
18. 难度:困难 | |
某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上). (1)求这个车库的高度AB; (2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米). (参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
|
19. 难度:中等 | |
某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题: (1)本次调查的学生有多少人? (2)补全上面的条形统计图; (3)扇形统计图中C对应的中心角度数是_____; (4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
|
20. 难度:中等 | |
在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍. (1)求甲、乙两种车辆单独完成任务分别需要多少天? (2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.
|
21. 难度:中等 | |
已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G. (1)求证:△ADE≌△CBF; (2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
|
22. 难度:中等 | |
某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500. (1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大? (2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
|
23. 难度:中等 | |
在所给的11×10方格中,每个小正方形的边长都是1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上. (1)在图1中画出周长为20的菱形ABCD(非正方形); (2)在图2中画出邻边比为1:2,面积为40的矩形EFGH,并直接写出矩形EFGH对角线的长.
|
24. 难度:简单 | |
问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系. 【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论. 【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD;请证明你的结论. 【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41, =1.73)
|