1. 难度:简单 | |
如图,在边长为3的正方形内有区域A(阴影部分所示),小明同学用随机模拟的方法求区域A的面积.若每次在正方形内随机产生10000个点,并记录落在区域A内的点的个数.经过多次试验,计算出落在区域A内点的个数平均值为6600个,则区域A的面积约为( ). A. 5 B. 6 C. 7 D. 8
|
2. 难度:简单 | |
一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( ). A. B. C. D.
|
3. 难度:中等 | |
在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球( ). A. 16个 B. 14个 C. 20个 D. 30个
|
4. 难度:中等 | |
桌上放着25粒棋子,小明和小刚两人轮流拿,一次可以拿走1粒棋子、2粒棋子或者3粒棋子,但不可以不拿,拿到最后一粒棋子的算输,该游戏( ). A. 公平 B. 不公平 C. 对小明有利 D. 不确定
|
5. 难度:中等 | |
现有四张完全相同的卡片,上面分别标有数字1,4,5,7,把卡片背面朝上洗匀,两个人依次从中随机抽取一张卡片不放回,则这两个人抽取的卡片上的数字都是奇数的概率是( ). A. B. C. D.
|
6. 难度:简单 | |
如图所示是虹林体育用品商店某月乒乓球,篮球,羽毛球,足球的销售量统计图,则乒乓球,羽毛球的销售量之和与篮球,足球的销售量之和的比是( ). A. 4:3 B. 2:1 C. 7:3 D. 3:1
|
7. 难度:简单 | |
为描述某地某日的气温变化情况,应制作( ). A. 折线图 B. 扇形图 C. 条形图 D. 直方图
|
8. 难度:中等 | |
甲、乙两人连续6年调查某地养鱼业的情况,提供了两方面的信息图(如图).甲调查表明:每个鱼池平均产量从第1年的1万条上升到第6年的2万条;乙调查表明:该地养鱼池的个数由第1年的30个减少到第6年的10个. 现给出下列四个判断:①该地第3年养鱼池产鱼数量为1.4万条;②该地第2年养鱼池产鱼的数量低于第3年养鱼池产鱼的数量;③该地这6年养鱼池产鱼的数量逐年减少;④这6年中,第6年该地养鱼池产鱼的数量最少.根据甲、乙两人提供的信息,可知其中正确的判断有( ). A. ①④ B. ④ C. ②③ D. ③④
|
9. 难度:中等 | |
武汉素有“首义之区”的美名,2011年9月9日,武汉与台湾将共同纪念辛亥革命一百周年.某校为了了解全校学生对辛亥革命的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图. 根据以上的信息,下列判断:①参加问卷调查的学生有50名;②参加进行问卷调查的学生中,“基本了解”的有10人;③扇形图中“基本了解”部分的扇形的圆心角的度数是108°;④在参加进行问卷调查的学生中,“了解”的学生占10%. 其中结论正确的序号是( ). A. ①②③ B. ①②④ C. ①③④ D. ②③④
|
10. 难度:简单 | |
如图所示的扇形图是对某班学生知道父母生日情况的调查,A表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道,若该班有40名学生,则只知道母亲生日的人数有( ).人 A. 25 B. 10 C. 22 D. 25
|
11. 难度:简单 | |
已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5﹣66.5这一小组的频率为( ). A. 0.04 B. 0.5 C. 0.45 D. 0.4
|
12. 难度:简单 | |
为了解某批食品的色素含量是否符合国家标准,从这批食品中随机抽取30袋进行统计分析,下列说法正确的是( ). A. 这批食品是总体 B. 每袋食品是个体 C. 30袋食品是样本容量 D. 30袋食品的色素量是总体的一个样本
|
13. 难度:简单 | |
数据处理的基本过程是__、__、__、_____.
|
14. 难度:中等 | |
①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:__________.
|
15. 难度:简单 | |
某教育网站正在就问题“中小学课外时间安排”进行在线调查,你认为调查结果是否具有代表性_____.
|
16. 难度:简单 | |
已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是____.
|
17. 难度:简单 | |
一组数据的最大值为60,最小值为48,且以2为组距,则应分______组.
|
18. 难度:简单 | |
张老师对本班60名学生的血型作了统计,并将统计结果绘制成如图所示的条形统计图,则该班___血型的人数最多.
|
19. 难度:中等 | |||||||||||||||||||
随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题: (1)这次被调查的学生有多少人? (2)求表中m,n,p的值,并补全条形统计图. (3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.
|
20. 难度:中等 | |||||||||||||||||||
某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:请根据上面的统计图表,解答下列问题: (1)在频数分布表中:m= ,n= ; (2)根据题中数据补全频数直方图; (3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格? 用户季度用水量频数分布表
|
21. 难度:中等 | |||||||||||||
为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 根据以上信息,回答下列问题: (1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人; (2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图; (3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
|
22. 难度:中等 | |
把3、5、6三个数字分别写在三张完全不同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字、放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.
|
23. 难度:中等 | |
如图,一个均匀的转盘被平均分成8等份,分别标有2,4,6,8,10,12,14,16这8个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.小亮与小颖参与游戏:小亮转动转盘,小颖猜数,若所猜数字与转出的数字相符,则小颖获胜,否则小亮获胜. (1)若小颖猜是“3的倍数”,则她获胜的概率为 ; (2)若小颖猜是“奇数”,则她获胜的概率是 ; (3)请你用这个转盘设计一个游戏,使得对小亮与小颖均是公平的; (4)小颖发现,当她猜的数字是“10”时,她连续获胜了10次.请问有可能吗?为什么?
|
24. 难度:中等 | |
中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题. (1)该记者本次一共调査了 名行人; (2)求图1中④所在扇形的圆心角,并补全图2; (3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.
|