1. 难度:中等 | |
A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是( ) A. 1cm B. 9cm C. 1cm或9cm D. 以上答案都不对
|
2. 难度:简单 | |
如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是( ) A. 点A与点D B. 点B与点D C. 点B与点C D. 点C与点D
|
3. 难度:中等 | |
我县人口约为530060人,用科学记数法可表示为( ) A. 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人
|
4. 难度:中等 | |
如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( ) A. B. C. D.
|
5. 难度:简单 | |
下列图形中,不是中心对称图形的是( ) A. B. C. D.
|
6. 难度:中等 | |
化简的结果是( ) A. B. C. a﹣b D. b﹣a
|
7. 难度:中等 | |
二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0,②b>0,③b2﹣4ac>0,④a+b+c<0,其中结论正确的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个
|
8. 难度:简单 | |
某人拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是( ) A. B. C. D.
|
9. 难度:中等 | |
在平面直角坐标系中,已知线段AB的两个端点分别是A(4,﹣1),B(1,1)将线段AB平移后得到线段A′B′,若点A的坐标为(﹣2,2),则点B′的坐标为( ) A. (﹣5,4) B. (4,3) C. (﹣1,﹣2) D. (﹣2,﹣1)
|
10. 难度:中等 | |
某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是( ) A. 甲运动员得分的平均数小于乙运动员得分的平均数 B. 甲运动员得分的中位数小于乙运动员得分的中位数 C. 甲运动员得分的最小值大于乙运动员得分的最小值 D. 甲运动员得分的方差大于乙运动员得分的方差
|
11. 难度:中等 | |
在函数中,自变量x的取值范围是_____.
|
12. 难度:中等 | |
用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为_____.
|
13. 难度:中等 | |
在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有_____个.
|
14. 难度:简单 | |
如图,直线AD∥BE∥CF,BC=AC,DE=6,那么EF的值是_____.
|
15. 难度:简单 | |
中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次引用负数.如果+20%表示“增加20%”,那“减少6%”可以记作_____.
|
16. 难度:中等 | |
在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于_____.
|
17. 难度:中等 | |
计算:﹣|1﹣|﹣sin30°+2﹣1.
|
18. 难度:中等 | |
解不等式组
|
19. 难度:中等 | |
如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F. (1)求证:BF=BC; (2)若AB=4cm,AD=3cm,求CF的长.
|
20. 难度:中等 | |
如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n). (1)求n和b的值; (2)求△OAB的面积; (3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
|
21. 难度:中等 | |
已知关于x的一元二次方程x2+mx﹣6=0. (1)求证:不论m为何实数,方程总有两个不相等的实数根; (2)若m=1,用配方法解这个一元二次方程.
|
22. 难度:中等 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3. 表1:小张抽样调查单位3名职工的健康指数
表2:小王抽样调查单位10名职工的健康指数
表3:小李抽样调查单位10名职工的健康指数
根据上述材料回答问题: (1)扇形统计图中老年职工所占部分的圆心角度数为 (2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.
|
23. 难度:中等 | |
如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG. (1)请判断四边形EBGD的形状,并说明理由; (2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
|
24. 难度:中等 | |
如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF. (1)求证:∠C=90°; (2)当BC=3,sinA=时,求AF的长.
|
25. 难度:简单 | |
阅读下列材料:阅读下列材料:在《北京城市总体规划(2004年﹣2020年)》中,房山区被确定为城市发展新区和生态涵养区,承担着首都经济发展、生态涵养、人口疏解和休闲度假等功能.近年来房山区地区生产总值和财政收入均稳定增长.2011年房山区地方生产总值是416.0亿元;2012年是科学助力之年,地方生产总值449.3亿元,比上一年增长8.0%;2013年房山努力在区域经济发展上取得新突破,地方生产总值是481.8亿元,比上年增长7.2%;2014年房山区域经济稳中提质,完成地方生产总值是519.3亿元,比上年增长7.8%;2015年房山区统筹推进稳增长,地区生产总值是554.7亿元,比上年增长了6.8%;2016年经济平稳运行,地区生产总值是593亿元,比上年增长了6.9%.根据以上材料解答下列问题: (1)选择折线图或条形图将2011年到2016年的地方生产总值表示出来,并在图中标明相应数据; (2)根据绘制的统计图中的信息,预估2017年房山区地方生产总值是 亿元,你的预估理由是 .
|
26. 难度:中等 | |||||||||||||||||||||||||||
已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.
小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整: (1)从表格中读出,当自变量是﹣2时,函数值是 ; (2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (3)在画出的函数图象上标出x=2时所对应的点,并写出m= . (4)结合函数的图象,写出该函数的一条性质: .
|
27. 难度:中等 | |
对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法: ①不论m为何值,函数图象一定过定点(﹣1,﹣3); ②当m=﹣1时,函数图象与坐标轴有3个交点; ③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.
|
28. 难度:中等 | |
已知如图是边长为10的等边△ABC. (1)作图:在三角形ABC中找一点P,连接PA、PB、PC,使△PAB、△PBC、△PAC面积相等.(不写作法,保留痕迹.) (2)求点P到三边的距离和PA的长.
|
29. 难度:中等 | |
如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3). (1)填空:PC= ,FC= ;(用含x的代数式表示) (2)求△PEF面积的最小值; (3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.
|