相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
2019年广东省中考数学模拟试卷(二)
一、单选题
详细信息
1. 难度:简单

﹣7的绝对值是(  )

A. ﹣7    B. 7    C.     D.

 

详细信息
2. 难度:简单

在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是(  )

A.     B.     C.     D.

 

详细信息
3. 难度:简单

2018525日,中国探月工程的鹊桥号中继星成功运行于地月拉格朗日点,它距离地球约.1500000用科学记数法表示为(   )

A.     B.     C.     D.

 

详细信息
4. 难度:简单

已知是关于x的一元二次方程的一个根,则k的值为  

A. 3 B.  C. 2 D.

 

详细信息
5. 难度:简单

如图所示的几何体的左视图是(   )

A.  B.

C.  D.

 

详细信息
6. 难度:中等

如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=(    )

A. 20°    B. 30°    C. 40°    D. 50°

 

详细信息
7. 难度:中等

某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:

鞋的尺码/cm

23

23.5

24

24.5

25

销售量/双

1

3

3

6

2

 

则这15双鞋的尺码组成的一组数据中,众数和中位数分别为(  )

A. 24.5,24.5 B. 24.5,24 C. 24,24 D. 23.5,24

 

详细信息
8. 难度:中等

在平面直角坐标系中,已知点,以原点O为位似中心,相似比为,把缩小,则点A的对应点的坐标是  

A.  B.

C.  D.

 

详细信息
9. 难度:中等

小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是(  )

A.     B.     C.     D.

 

详细信息
10. 难度:困难

如图,在矩形ABCD中,EAB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长APCDF点,连结CP并延长CPADQ点.给出以下结论:

①四边形AECF为平行四边形;

②∠PBA=APQ;

③△FPC为等腰三角形;

④△APB≌△EPC.

其中正确结论的个数为(  )

A. 1    B. 2    C. 3    D. 4

 

二、填空题
详细信息
11. 难度:中等

分解因式:2m22_____

 

详细信息
12. 难度:简单

把直线y=﹣x1沿x轴向右平移1个单位长度,所得直线的函数解析式为_____

 

详细信息
13. 难度:中等

m+=3,则m2+=_____

 

详细信息
14. 难度:中等

如图,为半圆内一点,为圆心,直径长为,将绕圆心逆时针旋转至,点上,则边扫过区域(图中阴影部分)的面积为__________.(结果保留

 

详细信息
15. 难度:中等

如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F.若点D的坐标为(108),则点E的坐标为                .

 

详细信息
16. 难度:困难

如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____

 

三、解答题
详细信息
17. 难度:简单

计算:||+10+2sin45°2cos30°+1

 

详细信息
18. 难度:中等

先化简,再求值:,其中a=-1.

 

详细信息
19. 难度:中等

尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作ABC,使∠A=α,C=90°,AB=a.

 

详细信息
20. 难度:困难

如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.

(1)计算古树BH的高;

(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)

 

详细信息
21. 难度:中等

随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了     人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为     

(2)将条形统计图补充完整.观察此图,支付方式的众数     ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

 

详细信息
22. 难度:中等

已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

 

详细信息
23. 难度:中等

如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

 

详细信息
24. 难度:中等

如图,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB⊙O的切线.   

(2)已知AO⊙O于点E,延长AO⊙O于点D,tanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

 

详细信息
25. 难度:困难

如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.   

(1)①直接写出点B的坐标;②求抛物线解析式.

(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.

(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,直接写出点M的坐标;若不存在,请说明理由.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.