1. 难度:简单 | |
﹣1+3的结果是( ) A. ﹣4 B. 4 C. ﹣2 D. 2
|
2. 难度:中等 | |
如图所示的几何体的左视图是( ) A. B. C. D.
|
3. 难度:简单 | |
已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是( ) A. y3>y2>y1 B. y1>y2>y3 C. y1>y3>y2 D. y3>y1>y2
|
4. 难度:中等 | |
已知关于x的不等式 A.
|
5. 难度:中等 | |
某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A. 18分,17分 B. 20分,17分 C. 20分,19分 D. 20分,20分
|
6. 难度:中等 | |
下列命题中真命题是( ) A. 若a2=b2,则a=b B. 4的平方根是±2 C. 两个锐角之和一定是钝角 D. 相等的两个角是对顶角
|
7. 难度:简单 | |
下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( ) A. 2011﹣2014年最高温度呈上升趋势 B. 2014年出现了这6年的最高温度 C. 2011﹣2015年的温差成下降趋势 D. 2016年的温差最大
|
8. 难度:简单 | |
若抛物线y=ax2+bx+c与x轴的公共点的坐标是(﹣1,0),(5,0),则这条抛物线的对称轴是直线( ) A. x=1 B. x=2 C. x=3 D. x=﹣2
|
9. 难度:简单 | |
如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC=2,则这朵三叶花的面积为( ) A. 3π–3 B. 3π–6 C. 6π–3 D. 6π–6
|
10. 难度:中等 | |
如图,点A,B为反比例函数y=在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为( ) A. B. C. D.
|
11. 难度:中等 | |
分解因式:x3y﹣2x2y+xy=______.
|
12. 难度:简单 | |
如图,∠ADB=90°,∠DCB=30°,则∠ABD=_____.
|
13. 难度:简单 | |
m是方程2x2+3x﹣1=0的根,则式子4m2+6m+2018的值为_____.
|
14. 难度:简单 | |
在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分,则他至少要答对_____道题.
|
15. 难度:中等 | |
如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,…按此规律继续旋转,直到点P2012为止,则AP2012等于_____.
|
16. 难度:困难 | |
如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为 .
|
17. 难度:中等 | |
解答下列各题: (1)计算: (2)计算: (3)解方程:
|
18. 难度:简单 | |
先化简,再求值:(3x+2y)2﹣(3x+y)(3x﹣y),其中x=2,y=3.
|
19. 难度:简单 | |
如图,▱ABCD的四个顶点都在小方格的顶点上,每个小正方形边长都是1,请画一个与▱ABCD的面积相等的特殊平行四边形,并且满足下列要求 (1)在图甲中画一个矩形; (2)在图乙中画一个菱形. (注意:四边形的顶点均在方格的顶点上,四边形的边用实数表示,顶点写上字母)
|
20. 难度:简单 | |
为了解某校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整). (1)问:在这次调查中,一共抽取了多少名学生? (2)补全频数分布直方图; (3)估计全校所有学生中有多少人乘坐公交车上学; (4)为了鼓励“低碳生活”,学校为随机抽到的步行或骑自行车上学的学生设计了一个摸奖游戏,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,随机地从四个小球中摸出一球然后放回,再随机地摸出一球,若第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,则有小礼物赠送,问获得小礼物的概率是多少(用树状图或列表说明)?
|
21. 难度:中等 | |
在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB、BC分别交于点M、N,求证:BM=CN.
|
22. 难度:中等 | |
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本. (1)这个班有多少学生? (2)这批图书共有多少本?
|
23. 难度:困难 | |
如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点. (1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集; (2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标; (3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
|
24. 难度:困难 | |
如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F (1)求∠EDF的度数; (2)若AD=6,求△AEF的周长; (3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.
|