相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
湖北省武汉市2019届九年级中考模拟试卷数学试卷
一、单选题
详细信息
1. 难度:中等

某地区一天早晨的气温是-6℃,中午的时候上升了11℃,到午夜又下降了9℃,则午夜的气温是(  )

A. -4℃ B. -5℃ C. -6℃ D. -7℃

 

详细信息
2. 难度:简单

分式有意义的条件是(      )

A. x≠0 B. y≠0 C. x≠0或y≠0 D. x≠0且y≠0

 

详细信息
3. 难度:简单

下列各式运算其中去括号不正确的有(  )

(1)-(-ab)=ab;(2)5x-(2x-1)-x2=5x-2x-1+x2

(3)3xyxyy2)=3xyxyy2;(4)(a3b3)-3(2a3-3b3)=a3b3-6a3+9b3

A. (1)(2) B. (1)(2)(3) C. (2)(3)(4) D. (1)(2)(3)(4)

 

详细信息
4. 难度:简单

某次射击训练中,一个小组的成绩如下表所示:

环数

7

8

9

人数

2

 

3

 

已知该小组的平均成绩为8.1环,那么成绩为8环的人数是(  )

A. 4 B. 5 C. 6 D. 7

 

详细信息
5. 难度:简单

下列计算正确的是

A. a3+a2=a5    B. (3ab)2=9a2b2    C. a6b÷a2=a3b    D. (ab3)2=a2b6

 

详细信息
6. 难度:中等

已知Q(2x+4,x2-1)在y轴上,则点Q的坐标为(      )

A. (0,4) B. (4,0) C. (0,3) D. (3,0)

 

详细信息
7. 难度:简单

如图,倒扣在台面上的一次性纸杯的俯视图是(  )

A.  B.  C.  D.

 

详细信息
8. 难度:中等

如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是(    )

A.  B.  C.  D.

 

详细信息
9. 难度:简单

一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是(   )

A. 17道 B. 18道 C. 19道 D. 20道

 

详细信息
10. 难度:困难

如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为ECFD,则图中阴影部分面积为(  )

A.  B.  C.  D.

 

二、填空题
详细信息
11. 难度:简单

计算:=______(结果用根号表示)

 

详细信息
12. 难度:中等

在3□2□(﹣2)的两个空格□中,任意填上“+”或“﹣”,则运算结果为3的概率是______________.

 

详细信息
13. 难度:简单

化简-的结果是   ▲ 

 

详细信息
14. 难度:中等

如图,菱形ABCD的周长为8,对角线ACBD相交于点OACBD=1:2,则AOBO=__,菱形ABCD的面积S=__

 

详细信息
15. 难度:中等

某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.

 

详细信息
16. 难度:简单

在矩形ABCD中,∠B的平分线BEAD交于点EBED的平分线EFDC交于点F,若AB=9,DF=2FC,则BC=___________.(结果保留根号)

 

三、解答题
详细信息
17. 难度:简单

解方程组:

 

详细信息
18. 难度:简单

如图,△ABC中,AB=BCBEAC于点EADBC于点D,∠BAD=45°,ADBE交于点F,连接CF.

(1)求证:BF=2AE;(2)若CD=1,求AD的长.

 

详细信息
19. 难度:简单

某中学举行了“校园好声音”演唱比赛活动,根据学生的成绩划分为ABCD四个等级,并绘制了不完整的两种统计图.

根据图中提供的信息,回答下列问题:

(1)求参加演唱比赛的学生共有多少人,并把条形图补充完整;

(2)求出扇形统计图中,m=         ,n=       

(3)求出C等级对应扇形的圆心角的度数.

 

详细信息
20. 难度:中等

某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.

(1)该水果店两次分别购买了多少元的水果?

(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?

 

详细信息
21. 难度:简单

如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣8x-1的函数交于A(﹣2,b),B两点.

(1)求一次函数的表达式;

(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.

 

详细信息
22. 难度:中等

某校数学兴趣小组想测量大报恩塔的高度.如图,成员小明利用测角仪在B处测得塔顶的仰角α=63.5°,然后沿着正对该塔的方向前进了13.1m到达E处,再次测得塔顶的仰角β=71.6°.测角仪BD的高度为1.4m,那么该塔AC的高度是多少?(参考数据:sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.00,sin71.6°≈0.95,cos71.6°≈0.30,tan71.6°≈3.00)

 

详细信息
23. 难度:困难

如图,在△ABC中,以AC为直径作⊙OBC于点D,交AB于点G,且DBC中点,DEAB,垂足为E,交AC的延长线于点F

(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=,求出⊙O的半径和BE的长;

(3)连接CG,在(2)的条件下,求的值.

 

详细信息
24. 难度:困难

如图1,已知抛物线Ly=ax2+bx1.5(a0)x轴交于点A(-1,0)和点B,顶点为M,对称轴为直线lx=1.

1)直接写出点B的坐标及一元二次方程ax2+bx1.5=0的解.

2)求抛物线L的解析式及顶点M的坐标.

3)如图2,设点P是抛物线L上的一个动点,将抛物线L平移.使它的頂点移至点P,得到新抛物线L′L′与直线l相交于点N.设点P的横坐标为m

①当m=5时,PMPN有怎样的数量关系?请说明理由.

②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?

③是否存在这样的点P,使PMN为等边三角形?若存在.请求出点P的坐标;若不存在,请说明理由.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.