相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
山东省青岛市市南区2018-2019学年八年级上学期期末考试数学试卷
一、单选题
详细信息
1. 难度:简单

以下列数组作为三角形的三条边长,其中能构成直角三角形的是(    )

A. 1 3    B. 5    C. 1.522.5    D.

 

详细信息
2. 难度:中等

以下列数组作为三角形的三条边长,其中能构成直角三角形的是(    )

A. 1 3    B. 5    C. 1.522.5    D.

【答案】C

【解析】A12+2≠32,不能构成直角三角形,故选项错误;

B(2+2≠52,不能构成直角三角形,故选项错误;

C1.52+22=2.52,能构成直角三角形,故选项正确;

D、(2+22,不能构成直角三角形,故选项错误.

故选:C

型】单选题
束】
2

下列说法不正确的是(  )

A. 的平方根是± B. 981的平方根

C. 0.4的算术平方根是0.2 D. =﹣3

 

详细信息
3. 难度:简单

下列说法不正确的是(  )

A. 的平方根是± B. 981的平方根

C. 0.4的算术平方根是0.2 D. =﹣3

【答案】C

【解析】

根据立方根与平方根的定义即可求出答案.

【解析】
0.4的算术平方根为 ,故C错误,

故选:C

【点睛】

考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.

型】单选题
束】
3

某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是(  )

A. 10,7    B. 7,7    C. 9,9    D. 9,7

 

详细信息
4. 难度:简单

某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是(  )

A. 10,7    B. 7,7    C. 9,9    D. 9,7

【答案】D

【解析】试题根据众数与中位数的定义分别进行解答即可.

【解析】
由条形统计图给出的数据可得:
9出现了6次,出现的次数最多,则众数是9

把这组数据从小到达排列,最中间的数是7,则中位数是7

故选D

考点:众数;条形统计图;中位数.

型】单选题
束】
4

都在直线上,且,则的关系是  

A.  B.  C.  D.

 

详细信息
5. 难度:中等

都在直线上,且,则的关系是  

A.  B.  C.  D.

【答案】A

【解析】

根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.

【解析】
直线的图象y随着x的增大而减小,

,点都在直线上,

故选:A

【点睛】

本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.

型】单选题
束】
5

如图,已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是    

A.  B.  C.  D.

 

详细信息
6. 难度:中等

如图,已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是    

A.  B.  C.  D.

【答案】C

【解析】

试题解析:图中C点坐标为(3,3),根据平移时点的变化规律,平移后C点坐标为(3-2,3-5),即C(1,-2).

故选C.

型】单选题
束】
6

李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如

果他骑车和步行的时间分别为分钟,列出的方程是【    】

A.  B. 

C.  D.

 

详细信息
7. 难度:中等

李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如

果他骑车和步行的时间分别为分钟,列出的方程是【    】

A.  B. 

C.  D.

【答案】D。

解析由实际问题抽象出二元一次方程组。

李明同学骑车和步行的时间分别为分钟,由题意得:

李明同学到学校共用时15分钟,所以得方程:

李明同学骑自行车的平均速度是250米/分钟,分钟骑了250米;步行的平均速度是80米/分钟,分钟走了80米。他家离学校的距离是2900米,所以得方程:

故选D。

型】单选题
束】
7

如图,△ABC中,ADBC边上的高,AE、BF分别是∠BAC、ABC的平分线,∠BAC=50°,ABC=60°,则∠EAD+ACD=(  )

A. 75°    B. 80°    C. 85°    D. 90°

 

详细信息
8. 难度:简单

如图,△ABC中,ADBC边上的高,AE、BF分别是∠BAC、ABC的平分线,∠BAC=50°,ABC=60°,则∠EAD+ACD=(  )

A. 75°    B. 80°    C. 85°    D. 90°

【答案】A

【解析】

依据ADBC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据ABC中,∠C=180°﹣ABC﹣BAC=70°,可得∠EAD+ACD=75°.

ADBC边上的高,∠ABC=60°,

∴∠BAD=30°,

∵∠BAC=50°,AE平分∠BAC,

∴∠BAE=25°,

∴∠DAE=30°﹣25°=5°,

∵△ABC中,∠C=180°﹣ABC﹣BAC=70°,

∴∠EAD+ACD=5°+70°=75°,

故选:A.

点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.

型】单选题
束】
8

(2015随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),st之间的函数关系如图所示,有下列结论:

①出发1小时时,甲、乙在途中相遇;

②出发1.5小时时,乙比甲多行驶了60千米;

③出发3小时时,甲、乙同时到达终点;

④甲的速度是乙速度的一半.

其中,正确结论的个数是(  )

A. 4 B. 3 C. 2 D. 1

 

二、填空题
详细信息
9. 难度:简单

(2015随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),st之间的函数关系如图所示,有下列结论:

①出发1小时时,甲、乙在途中相遇;

②出发1.5小时时,乙比甲多行驶了60千米;

③出发3小时时,甲、乙同时到达终点;

④甲的速度是乙速度的一半.

其中,正确结论的个数是(  )

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】

试题此题主要考查了一次函数的应用,读函数的图象的关键是理解横、纵坐标表示的意义,根据题意并结合横纵坐标的意义得出辆摩托车的速度,然后再分别分析,即可得出答案.

【解析】
由图象可得:出发
1小时,甲、乙在途中相遇,故正确;

甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,

解得:a=80

乙开汽车的速度为80千米/小时,

甲的速度是乙速度的一半,故正确;

出发15小时,乙比甲多行驶了:180﹣40=60(千米),故正确;

乙到达终点所用的时间为15小时,甲得到终点所用的时间为3小时,故错误;

正确的有①②④,共3个,

故选:B

考点:一次函数的应用.

 

型】单选题
束】
9

计算:______

 

详细信息
10. 难度:中等

计算:______

【答案】5

【解析】

根据二次根式的除法法则运算.

【解析】
原式

故答案为5

【点睛】

本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,是解题的关键.

型】填空
束】
10

如图,在平面直角坐标系中,直线与直线交于点,则______

 

详细信息
11. 难度:中等

如图,在平面直角坐标系中,直线与直线交于点,则______

【答案】-1

【解析】

将点A的坐标代入两直线解析式得出关于mb的方程组,解之可得.

【解析】
由题意知

解得

故答案为:

【点睛】

本题主要考查两直线相交或平行问题,解题的关键是掌握两直线的交点坐标必定同时满足两个直线解析式.

型】填空
束】
11

如图,长方形纸片ABCD中,AB=4BC=6,将△ABC沿AC折叠,使点B落在点E处,CEAD于点F,则△AFC的面积等于___

 

详细信息
12. 难度:简单

如图,长方形纸片ABCD中,AB=4BC=6,将△ABC沿AC折叠,使点B落在点E处,CEAD于点F,则△AFC的面积等于___

【答案】

【解析】

由矩形的性质可得AB=CD=4BC=AD=6AD//BC,由平行线的性质和折叠的性质可得∠DAC=ACE,可得AF=CF,由勾股定理可求AF的长,即可求△AFC的面积.

【解析】
四边形ABCD是矩形

折叠

中,

.

故答案为:.

【点睛】

本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF的长是本题的关键.

型】填空
束】
12

某公司要招聘一名新的大学生,公司对入围的甲、乙两名候选人进行了三项测试,成绩如表所示,根据实际需要,规定能力、技能、学业三项测试得分按532的比例确定个人的测试成绩,得分最高者被录取,此时______将被录取.

得分项目

能力

技能

学业

95

84

61

87

80

77

 

 

 

详细信息
13. 难度:困难

某公司要招聘一名新的大学生,公司对入围的甲、乙两名候选人进行了三项测试,成绩如表所示,根据实际需要,规定能力、技能、学业三项测试得分按532的比例确定个人的测试成绩,得分最高者被录取,此时______将被录取.

得分项目

能力

技能

学业

95

84

61

87

80

77

 

 

【答案】

【解析】

根据题意和表格中的数据可以分别求得甲乙两位选手的成绩,从而可以解答本题.

【解析】
由题意和图表可得,

甲的平均成绩

乙的平均成绩

故甲选手得分高,

故答案为:甲.

【点睛】

本题考查加权平均数,解题的关键是明确加权平均数的计算方法.

型】填空
束】
13

如图,ABCD,点PCD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F40°,则∠E_____度.

 

详细信息
14. 难度:简单

如图,ABCD,点PCD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F40°,则∠E_____度.

【答案】80

【解析】

如图,根据角平分线的性质和平行线的性质可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE,即∠E=2∠F=2×40°=80°.

故答案为:80.

型】填空
束】
14

如图,点P出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P2018次碰到长方形的边时,点P的坐标为______

 

三、解答题
详细信息
15. 难度:简单

如图,点P出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P2018次碰到长方形的边时,点P的坐标为______

【答案】

【解析】

根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.

【解析】
如图所示:经过
6次反弹后动点回到出发点

当点P2018次碰到矩形的边时为第337个循环组的第2次反弹,

P的坐标为

故答案为:

【点睛】

此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.

型】填空
束】
15

为了保护环境,某公交公司决定购买AB两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2A型车比购买3B型车少60万元.

请求出ab

若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?

 

详细信息
16. 难度:简单

为了保护环境,某公交公司决定购买AB两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2A型车比购买3B型车少60万元.

请求出ab

若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?

【答案】1;(2)购买这批混合动力公交车需要1040万元.

【解析】

(1)根据“购买一台A型车比购买一台B型车多20万元,购买2A型车比购买3B型车少60万元.”即可列出关于ab的二元一次方程组,解之即可得出结论;

(2)A型车购买x台,B型车购买y台,根据总节油量=2.4×A型车购买的数量+2.2×B型车购买的数量、A型车数量+B型车数量=10得出方程组,解之求得xy的值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.

【解析】
根据题意得:

解得:;

A型车购买x台,B型车购买y台,

根据题意得:

解得:

万元

答:购买这批混合动力公交车需要1040万元.

【点睛】

本题考查了二元一次方程组的应用,根据题意找出等量关系列出方程组是解题的关键.

型】解答
束】
16

在边长为1的正方形网格中

作出关于直线MN对称的

经过图形平移得到,当点A的坐标是时,请建立适当的直角坐标系,分别写出点的坐标.

 

详细信息
17. 难度:简单

在边长为1的正方形网格中

作出关于直线MN对称的

经过图形平移得到,当点A的坐标是时,请建立适当的直角坐标系,分别写出点的坐标.

【答案】1)见解析;(2.

【解析】

(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;

(2)直接利用A点坐标得出平面直角坐标系,进而得出各点坐标.

【解析】
如图所示:,即为所求;

【点睛】

此题主要考查了轴对称变换以及平移变换、根据点的坐标建立平面直角坐标系,正确得出对应点位置是解题关键.

型】解答
束】
17

计算:计算:解方程组:

 

详细信息
18. 难度:中等

计算:计算:解方程组:

【答案】1;(2;(3

【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;

(2)利用平方差公式和完全平方公式计算;

(3)利用加减消元法解方程组.

【解析】
原式

原式

解得

代入

解得

所以方程组的解为

【点睛】

本题考查了二次根式的混合运算及二元一次方程组的解法,熟练掌握其运算法则和解法是解题的关键.

型】解答
束】
18

“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A之间的距离为100米.

BC间的距离;这辆小汽车超速了吗?请说明理由.

 

详细信息
19. 难度:中等

“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A之间的距离为100米.

BC间的距离;这辆小汽车超速了吗?请说明理由.

【答案】这辆小汽车没有超速.

【解析】

(1)根据勾股定理求出BC的长;
(2)直接求出小汽车的时速,进行比较得出答案.

(1)RtABC中,AC60 m

AB100 m,且AB为斜边,根据勾股定理,得BC80 m.

(2)这辆小汽车没有超速.

理由:∵80÷516(m/s)

16 m/s57.6 km/h57.6<70

∴这辆小汽车没有超速.

【点睛】

考查勾股定理的应用,熟练掌握勾股定理是解题的关键.

型】解答
束】
19

已知:如图,线段ACBD相交于点G,连接ABCDECD上一点,FDG上一点,,且

求证:,求的度数.

 

详细信息
20. 难度:中等

已知:如图,线段ACBD相交于点G,连接ABCDECD上一点,FDG上一点,,且

求证:,求的度数.

【答案】1)见解析;(2

【解析】

依据平行线的性质,即可得到,进而得出,根据内错角相等,两直线平行,即可得出

依据平行线的性质,即可得到,再根据三角形外角性质,即可得到的度数.

【解析】

【点睛】

本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.

型】解答
束】
20

我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

 

平均数(分)

中位数(分)

众数(分)

初中部

 

85

 

高中部

85

 

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

 

详细信息
21. 难度:简单

我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

 

平均数(分)

中位数(分)

众数(分)

初中部

 

85

 

高中部

85

 

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

【答案】1

 

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

2)初中部成绩好些(3)初中代表队选手成绩较为稳定

【解析】【解析】
1)填表如下

 

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

2)初中部成绩好些

两个队的平均数都相同,初中部的中位数高,

在平均数相同的情况下中位数高的初中部成绩好些

3

,因此,初中代表队选手成绩较为稳定

1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答

2)根据平均数和中位数的统计意义分析得出即可

3)分别求出初中、高中部的方差比较即可 

型】解答
束】
21

受天气的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两个大型养殖场调运鸡蛋,已知从甲养殖场每天至少要调出300斤,从两养殖场调运鸡蛋到超市的路程和运费如下表:

 

到超市的路程千米

运费千米

甲养殖场

200

   

乙养殖场

140

   

 

设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出Wx的函数关系式;

若某天计划从乙养殖场调运700斤鸡蛋,则总运费为多少元?

请你帮助超市设计一个调运方案,使得每天调运鸡蛋的总运费最低?

 

详细信息
22. 难度:中等

受天气的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两个大型养殖场调运鸡蛋,已知从甲养殖场每天至少要调出300斤,从两养殖场调运鸡蛋到超市的路程和运费如下表:

 

到超市的路程千米

运费千米

甲养殖场

200

   

乙养殖场

140

   

 

设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出Wx的函数关系式;

若某天计划从乙养殖场调运700斤鸡蛋,则总运费为多少元?

请你帮助超市设计一个调运方案,使得每天调运鸡蛋的总运费最低?

【答案】1;(2)总费用为2670元;(3)从甲养殖场调运300斤,从乙养殖场调运900斤,可使得每天调运鸡蛋的总运费最低.

【解析】

(1)根据题意和表格中的数据可知从甲养殖场调运鸡蛋的费用+从乙养殖场调运鸡蛋的费用=费用总和,从而可以求得Wx的函数关系式;

(2)1200-x=700可以求得x的值,然后将x的值代入(1)中的函数解析式即可求得相应的费用;

(3)根据题意和一次函数的性质,可以解答本题.

【解析】
由题意可得,

Wx的函数关系式是300≤x≤1200);

时,得

时,

答:总费用为2670元;

时,W取得最小值,此时

答:从甲养殖场调运300斤,从乙养殖场调运900斤,可使得每天调运鸡蛋的总运费最低.

【点睛】

本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.

型】解答
束】
22

14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.

(1)a=      ,b=     

(2)直接写出与x之间的函数关系式;

(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?

 

详细信息
23. 难度:中等

14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.

(1)a=      ,b=     

(2)直接写出与x之间的函数关系式;

(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?

【答案】(1)6,8;(2)=;(3)A团有20人,B团有30人.

【解析】

试题(1)函数图象,用购票款数除以定价的款数,得出a的值;用第11人到20人的购票款数除以定价的款数,得出b的值;

(2)利用待定系数法求正比例函数解析式求出,分x≤10与x>10,利用待定系数法求一次函数解析式求出与x的函数关系式即可;

(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.

试题解析:(1)由图象上点(10,480),得到10人的费用为480元,a=×10=6;

由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,b=×10=8;

(2)设函数图象经过点(0,0)和(10,480),=48,

0≤x≤10时,设函数图象经过点(0,0)和(10,800),=80,,x>10时,设函数图象经过点(10,800)和(20,1440),

=

(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,48n+80(50﹣n)=3040,解得n=30(不符合题意舍去),当n>10时,48n+64(50﹣n)+160=3040,解得n=20,则50﹣n=50﹣20=30.

答:A团有20人,B团有30人.

考点:1.一次函数的应用;2.分段函数;3.分类讨论;4.综合题.

型】解答
束】
23

在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是AB,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.

请判断下列各点中是平面直角坐标系中的平衡点的是______填序号

.

若在第一象限中有一个平衡点恰好在一次函数为常数的图象上.

mb的值;

一次函数为常数y轴交于点C,问:在这函数图象上,是否存在点使,若存在,请直接写出点M的坐标;若不存在,请说明理由.

经过点,且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.

 

详细信息
24. 难度:中等

在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是AB,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.

请判断下列各点中是平面直角坐标系中的平衡点的是______填序号

.

若在第一象限中有一个平衡点恰好在一次函数为常数的图象上.

mb的值;

一次函数为常数y轴交于点C,问:在这函数图象上,是否存在点使,若存在,请直接写出点M的坐标;若不存在,请说明理由.

经过点,且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.

【答案】1)②;(2)①,②存在,M的坐标为;(3)没有,见解析.

【解析】

根据平衡点的定义,逐一验证AB两点是否为平衡点,此题得解;

由平衡点的定义,可得出关于m的一元一次方程,解之可求出m的值,再利用一次函数图象上点的坐标特征可求出b值;

存在,设设点M的坐标为,利用三角形的面积公式结合,可得出关于x的含绝对值符号的一元一次方程,解之即可得出x的值,再将其代入点M的坐标中即可求出结论;

没有,设平衡点的坐标为,利用平衡点的定义可得出,即,由,可得出:经过点,且平行于x轴的直线上没有平衡点.

【解析】

不是平衡点;

是平衡点.

故答案为:

为平衡点,且在第一象限,

解得:

N的坐标为

在一次函数为常数的图象上,

解得:

存在,设点M的坐标为

,即

解得:

M的坐标为

没有,理由如下:

设平衡点的坐标为

,即

经过点,且平行于x轴的直线上没有平衡点.

【点睛】

本题考查了长方形的周长、长方形的面积、解一元一次方程、一次函数图象上点的坐标特征、三角形的面积以及解含绝对值符号的一元一次方程,解题的关键是:利用平衡点的定义逐一验证点AB是否为平衡点;利用平衡点的定义及一次函数图象上点的坐标特征,求出mb的值;利用三角形的面积公式结合,找出关于x的含绝对值符号的一元一次方程;利用平衡点的定义找出

型】解答
束】
24

直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动。

(1)如图1,已知AEBE分别是∠BAO和∠ABO的角平分线,点AB在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生化,试求出∠AEB的大小;

(2)如图2AB不平行CDDECE分别平分∠ADC、∠BCDADBC分别是∠BAP和∠ABM的角平分线,ADBC的延长线交于点F,点AB在运动的过程中,∠CED的大小是否发生变化?若发生变化,请说明变化情况;若不发生变化,求出∠CED的大小;

(3)如图3,延长BAG,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于EF,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.