1. 难度:中等 | |
在0,﹣1,0.5,(﹣1)2四个数中,最小的数是( ) A. 0 B. ﹣1 C. 0.5 D. (﹣1)2
|
2. 难度:简单 | |
下列图形中,即是轴对称图形又是中心对称图形的是( ) A. B. C. D.
|
3. 难度:简单 | |
如图,太阳光线与地面成80°角,窗子AB=2米,要在窗子外面上方0.2米的点D处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC的长度至少是( ) A. 米 B. 米 C. 米 D. 米
|
4. 难度:中等 | |
在函数中,自变量x的取值范围是( ) A. C.
|
5. 难度:中等 | |
如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=( ) A. B. C. D.
|
6. 难度:困难 | |
如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=( ) A. B. C. D.
|
7. 难度:中等 | |
如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=( ) A. B. C. D.
|
8. 难度:困难 | |
如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,点N从点A同时出发,以2cm/s的速度经过点D向点C运动,当其中一个动点到达端点时,另一个动点也随之停止运动.则△AMN的面积y(cm2)与点M运动的时间t(s)的函数的图象大致是( ) A. B. C. D.
|
9. 难度:中等 | |
设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为Sk(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是( ) A. B. C. 16 D. 14
|
10. 难度:中等 | |
(题文)如图,已知二次函数的图象如图所示,有下列5个结论 A.
|
11. 难度:简单 | |
甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示为______米.
|
12. 难度:中等 | |
若函数是二次函数,则m的值为______.
|
13. 难度:简单 | |
把多项式8a3﹣2a分解因式的结果是_____.
|
14. 难度:中等 | |
对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.
|
15. 难度:中等 | |
若方程的根为正数,则k的取值范围是______.
|
16. 难度:中等 | |
有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为_____.
|
17. 难度:简单 | |
如图,点
|
18. 难度:困难 | |
已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,An,则点An的坐标为____________.
|
19. 难度:中等 | |
如图,已知A(3,1),B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为______.
|
20. 难度:困难 | |
如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=4-2,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=AM;④若BE平分∠DBC,则正方形ABCD的面积为4,其中结论正确的是______(填序号)
|
21. 难度:中等 | |
计算 (1)|-1|-+4sin30° (2)先化简,再求值:+1,其中a=2sin60°-tan45°.
|
22. 难度:中等 | |
已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根. (1)求k的取值范围; (2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.
|
23. 难度:中等 | |
如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC. (1)求一次函数、反比例函数的解析式; (2)根据图象直接写出kx+b<的x的取值范围; (3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.
|
24. 难度:中等 | ||||||||||
深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价; (2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
|
25. 难度:困难 | |
已知:如图,在矩形ABCD中,AC是对角线,点P为矩形外一点且满足AP=PC,AP⊥PC,PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M. (1)若AP=5,AB=BC,求矩形ABCD的面积; (2)若CD=PM,试判断线段AC、AP、PN之间的关系,并证明.
|
26. 难度:中等 | |
如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点. (1)如图1,求⊙O的半径; (2)如图1,若点E是BC的中点,连接PE,求PE的长度; (3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.
|
27. 难度:困难 | |
如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′. (1)求抛物线C的函数表达式; (2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围. (3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
|