1. 难度:简单 | |
抛物线的顶点坐标是( ) A. B. C. D.
|
2. 难度:中等 | |
一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是( ) A.3.6 B.3.8 C.3.6或3.8 D.4.2
|
3. 难度:简单 | |
如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( ) A.
|
4. 难度:简单 | |
一元二次方程x2-4x+4=0的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 无法确定
|
5. 难度:中等 | |
如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为( ) A. 3 B. ﹣3 C. D. ﹣
|
6. 难度:中等 | |
如图,AB是⊙O的切线,A为切点,连接OB交⊙O于点C.若OA=3,tan∠AOB=,则BC的长为( ) A. 2 B. 3 C. 4 D. 5
|
7. 难度:中等 | |
如图,反比例函数y=(x<0)与一次函数y=x+4的图象交于A、B两点的横坐标分别为-3,-1.则关于x的不等式<x+4(x<0)的解集为( ) A. x<-3 B. -3<x<-1 C. -1<x<0 D. x<-3或-1<x<0
|
8. 难度:中等 | |
如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( ) A.
|
9. 难度:困难 | |
某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程( ) A. B. C. D.
|
10. 难度:中等 | |
将抛物线平移,得到抛物线,下列平移方式中,正确的是( ) A. 先向左平移1个单位,再向上平移2个单位 B. 先向左平移1个单位,再向下平移2个单位 C. 先向右平移1个单位,再向上平移2个单位 D. 先向右平移1个单位,再向下平移2个单位
|
11. 难度:中等 | |
按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( ) ①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形 ③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1. A. 1 B. 2 C. 3 D. 4
|
12. 难度:中等 | |
二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确的结论有( ) A. 2个 B. 3个 C. 4个 D. 5个
|
13. 难度:中等 | |
如图,矩形ABCD对角线AC、BD交于点O,若∠AOD=110°,则
|
14. 难度:中等 | |
如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为______米.
|
15. 难度:中等 | |
如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= .
|
16. 难度:困难 | |
在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是______cm2.
|
17. 难度:中等 | |
计算: (1)计算:(π-2017)0+|1-|+2-1-2sin60° (2)解方程:(x-2)(x-5)=-2
|
18. 难度:困难 | |
关于三角函数有如下的公式: sin(α+β)=sinαcosβ+cosαsinβ① cos(α+β)=cosαcosβ﹣sinαsinβ② tan(α+β)=③ 利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如: tan105°=tan(45°+60°)==﹣(2+). 根据上面的知识,你可以选择适当的公式解决下面的实际问题: 如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.
|
19. 难度:中等 | |
四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF. (1)求证:△ADE≌△ABF; (2)若BC=12,DE=5,求△AEF的面积.
|
20. 难度:中等 | |
如图,直线 (1)求 (2)若点
|
21. 难度:中等 | |
某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图. (1)根据给出的信息,补全两幅统计图; (2)该校九年级有600名男生,请估计成绩未达到良好有多少名? (3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
|
22. 难度:困难 | |
如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆. (1)求证:AC是⊙O的切线; (2)过点E作EH⊥AB,垂足为H,求证:CD=HF; (3)若CD=1,EH=3,求BF及AF长.
|
23. 难度:困难 | |
已知二次函数y=ax2+bx+3的图象分别与x轴交于点A(3,0),C(-1,0),与y轴交于点B.点D为二次函数图象的顶点. (1)如图①所示,求此二次函数的关系式: (2)如图②所示,在x轴上取一动点P(m,0),且1<m<3,过点P作x轴的垂线分别交二次函数图象、线段AD,AB于点Q、F,E,求证:EF=EP; (3)在图①中,若R为y轴上的一个动点,连接AR,则BR+AR的最小值______(直接写出结果).
|