1. 难度:中等 | |
若二次根式有意义,则 A.
|
2. 难度:简单 | |
下列计算正确的是 A. B. C. D..
|
3. 难度:简单 | |
下列二次根式是最简二次根式的是( ) A. B. C. D.
|
4. 难度:中等 | |
把化简后得( ) A. B. C. D.
|
5. 难度:简单 | |
以下列各组数据为边不能组成直角三角形的一组数据是( ) A. 3,4,5 B. C. 6,8,10 D. 5,12,13
|
6. 难度:中等 | |
下列说法正确的是( ) A. 一组对边平行且相等的四边形是平行四边形 B. 对角线相等的四边形是矩形 C. 对角线相等的平行四边形是正方形 D. 对角线互相垂直的四边形是菱形
|
7. 难度:中等 | |
如图,一根长5米的竹竿AB斜靠在一竖直的墙AO上,这时AO为4米,如果竹竿的顶端A沿墙下滑1米,竹竿底端B外移的距离BD( ) A. 等于1米 B. 大于1米 C. 小于1米 D. 以上都不对
|
8. 难度:中等 | |
如图,在□ABCD中,对角线AC,BD相交于点O,AC=10,BD=6,AD=4,则□ABCD的面积是( ) A. 12 B. C. 24 D. 30
|
9. 难度:中等 | |
如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,点D在BC上,以AC为对角线的所有ADCE中DE的最小值是( ) A. 1 B. 2 C. D.
|
10. 难度:中等 | |
如图,正方形ABCD的边长为2,点E、F分别为边AD、BC上的点,EF=,点G、H分别为AB、CD边上的点,连接GH,若线段GH与EF的夹角为45°,则GH的长为( ) A. B. C. D.
|
11. 难度:中等 | |
计算:=____________
|
12. 难度:简单 | |
若,化简: =____________
|
13. 难度:简单 | |
平面直角坐标系中,点P(-4,2)到坐标原点的距离是____________
|
14. 难度:中等 | |
如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,若AD=3,DB=5,DE=1.2,则BC=________
|
15. 难度:中等 | |
如图,□ABCD和□DCFE的周长相等,∠B+∠F=220°,则∠DAE的度数为__________
|
16. 难度:中等 | |
如图,将一个长为9,宽为3的长方形纸片ABCD沿EF折叠,使点C与点A重合,则EF的长为___________
|
17. 难度:中等 | |
(1)计算: (2)计算:
|
18. 难度:中等 | |
已知
|
19. 难度:中等 | |
如图,在ABCD中,E、F分别是AB、CD的中点,求证:四边形EBFD是平行四边形.
|
20. 难度:中等 | |
如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD (1)求证:四边形OCED是菱形 (2)若AD=2CD,菱形面积是16,求AC的长.
|
21. 难度:中等 | |
已知:如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点E为AC中点,点F为BD中点.求证:EF⊥BD
|
22. 难度:中等 | |
如图,在△ABC中,D为BC上一点,且AB=5,BD=3,AD=4,且△ABC的周长为18,求AC的长和△ABC的面积.
|
23. 难度:中等 | |
如图,在△ACD中,AD=9,CD=,△ABC中,AB=AC,若∠CAB=60°,∠ADC=30°,在△ACD外作等边△ADD′ (1)求证:BD=CD′ (2)求BD的长.
|
24. 难度:困难 | |
如图,平面直角坐标系中,直线AB:y=-2x+8交y轴于点A,交x轴于点B,以AB为底作等腰三角形△ABC的顶点C恰好落在y轴上,连接BC,直线x=2交AB于点D,交BC于点E,交x轴于点G,连接CD. (1)求证:∠OCB=2∠CBA; (2)求点C的坐标和直线BC的解析式; (3)求△DEB的面积; (4)在x轴上存在一点P使PD-PC最长,请直接写出点P的坐标.
|