1. 难度:简单 | |
下列图形中,不能通过其中一个四边形平移得到的是( ) A. B. C. D.
|
2. 难度:困难 | |
下列计算正确的是( ) A. a+2a2=3a2 B. a8÷a2=a4 C. a3·a2=a6 D. (a3)2=a6
|
3. 难度:中等 | |
下列等式由左边向右边的变形中,属于因式分解的是( ) A. x2+5x-1=x(x+5)-1 B. x2-4+3x=(x+2)(x-2)+3x C. x2-9=(x+3)(x-3) D. (x+2)(x-2)=x2-4
|
4. 难度:中等 | |
已知是二元一次方程 A. 3 B. -5 C. -3 D. 5
|
5. 难度:简单 | |
如图,不能判断l1∥l2的条件是( ) A. ∠1=∠3 B. ∠2+∠4=180° C. ∠4=∠5 D. ∠2=∠3
|
6. 难度:中等 | |
下列命题:①同旁内角互补;②若=,则 A. 4个 B. 3个 C. 2个 D. 1个
|
7. 难度:中等 | |
为了书写简便,数学家欧拉引进了求和符号“ A. -50 B. -70 C. -40 D. -20
|
8. 难度:中等 | |
如图, A. 4 B. 5 C. 6 D. 7
|
9. 难度:简单 | |
小明同学在百度搜索引擎中输入“中国梦,我的梦”,引擎搜索耗时0.00175秒,将这个数用科学记数法表示为____.
|
10. 难度:中等 | |
如图,木工师傅用角尺画平行线的依据是_________________________.
|
11. 难度:中等 | |
若xn=4,yn=9,则(xy)n=________.
|
12. 难度:中等 | |
若关于
|
13. 难度:中等 | |
内角和等于外角和2倍的多边形是__________边形.
|
14. 难度:中等 | |
若一个三角形的三条边的长分别是2,x,6,则整数x的值有__________个.
|
15. 难度:简单 | |
如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是_____.
|
16. 难度:困难 | |
当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为_____.
|
17. 难度:中等 | |
已知,,,…,xn中每一个数值只能取2,0,-1中的一个,且满足x1+x2+…+xn=﹣17,x12+x22+…+xn2=47,则x13+x23+…+xn3的值为___________.
|
18. 难度:中等 | |
如图,已知∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.当AB⊥OM,且△ADB有两个相等的角时,∠OAC的度数为______________.
|
19. 难度:中等 | |
计算: (1) (2)
|
20. 难度:中等 | |
分解因式: (1) (2)
|
21. 难度:中等 | |
先化简,再求值:其中.
|
22. 难度:中等 | |
在图中,利用网格点和直尺画图或计算: (1)在给定方格纸中画出平移后的; (2)画出 (3)画出 (4)记网格的边长为1,则在平移的过程中线段
|
23. 难度:中等 | |
如图, (1)求证: (2)若
|
24. 难度:中等 | |
基本事实:“若ab=0,则a=0或b=0”.一元二次方程x2-x-2=0可通过因式分解化为(x-2)(x+1)=0,由基本事实得x-2=0或x+1=0,即方程的解为x=2或x=-1. (1)、试利用上述基本事实,解方程:2x2-x=0: (2)、若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.
|
25. 难度:中等 | |
定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”. (1)若a=2,b=﹣1,直接写出a,b的“如意数”c; (2)如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.
|
26. 难度:中等 | |
对于两个不相等的实数a、b,我们规定符号max{a,b}表示a、b中的较大值,min{a,b}表示a、b中的较小值.如:max{2,4}=4,min{2,4}=2.按照这个规定: 解方程组:
|
27. 难度:中等 | |
为了参加学校举办的“校长杯”足球联赛,某中学七(1)班学生去商场购买了 (1)求购买一个 (2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买
|
28. 难度:中等 | |
如图,直线m与直线n相交于点O,A、B两点同时从点O出发,点A以每秒x个单位长度沿直线n向左运动,点B以每秒y个单位长度沿直线m向上运动。 (1)若运动1s时,点B比点A多运动1个单位;运动2s时,点B与点A运动的路程和为6个单位,则x=_________,y=___________. (2)如图,当直线m与直线n垂直时,设∠BAO和∠ABO的角平分线相交于点P.在点A、 B在运动的过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值(写出主要过程);若发生变化,请说明理由. (3)如图,将(2)中的直线n不动,直线m绕点O按顺时针方向旋转α(0<ɑ<90),其他条件不变.ⅰ)用含有α的式子表示∠APB的度数____________. ⅱ)如果再分别作△ABO的两个外角∠BAC,∠ABD的角平分线相交于点Q,并延长BP、QA交于点M.则下列结论正确的是___________(填序号) . ①APB与∠Q互补;②∠Q与∠M互余;③∠APB-∠M为定值;④∠M-∠Q为定值.
|