1. 难度:简单 | |
﹣2的相反数是( ) A. ﹣2 B. 2 C. ﹣ D.
|
2. 难度:中等 | |
钓鱼岛是中国的固有领土,其渔业资源十分丰富,年捕鱼量达15万吨.数据15万用科学记数法表示为( ) A. 1.5×104 B. 15×104 C. 1.5×105 D. 15×105
|
3. 难度:中等 | |
如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( ) A. B. C. D.
|
4. 难度:简单 | |
下列计算正确的是( ) A. B. C. D.
|
5. 难度:中等 | |
在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其它差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A. 1 B. C. D.
|
6. 难度:中等 | |
按国家2011年9月1日起实施的有关个人所得税的规定个人月工资(薪金)中,扣除国家规定的免税部分3500元后的剩余部分为应纳税所得额,全月应纳税所得额不超过1500元的税率为3%,超过1500元至4500元部分的税率为10%,若小明妈妈某月缴了145元的个人所得税,则她的月工资是( ) A. 6000元 B. 5500元 C. 2500元 D. 2000元
|
7. 难度:中等 | |
如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是 ( ) A. BD=CE B. DA=DE C. ∠EAC=90° D. ∠ABC=2∠E
|
8. 难度:中等 | |
甲.乙两人进行跑步训练,他们所跑的路程y(米)与时间x(秒)之间的关系如图所示,则下列说法错误的是( ) A. 离终点40米处,乙追上甲 B. 甲比乙迟3秒到终点 C. 甲跑步的速度是5米/秒 D. 乙跑步的速度是米/秒
|
9. 难度:中等 | |
若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( ) A. 3 B. 6 C. 9 D. 36
|
10. 难度:中等 | |
(2017浙江省湖州市)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是( ) A. 13 B. 14 C. 15 D. 16
|
11. 难度:简单 | |
因式分【解析】
|
12. 难度:简单 | |
如图,⊙O的半径为5,点P是弦AB延长线上的一点,连接OP,若OP=8,∠P=30°,则弦AB的长为___.
|
13. 难度:中等 | |
明朝的数学家程大位在《算法统宗》中有一道古诗趣题:甲赶群羊逐草茂,乙拽只羊随其后,戏问甲及一百否?甲云所曰无差谬;若得这般一群羊,再添半群小半群,得你一只来方凑,玄机妙算谁猜透?其大意是:甲赶一群羊去放,乙也牵着一只羊跟在甲的后面.乙问甲:“你的这群羊有没有一百只呢?”甲说:“我再得这样的一群羊,再得这群羊的一半,还得这群羊的四分之一,最后凑上你的这只羊,正好是一百只.”问甲原有多少只羊?设甲原有x只羊,根据题意,可列方程为_________________________
|
14. 难度:中等 | |
我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”,在Rt△ABC中,∠ACB=90°,AB=4,AC=2,D是BC的中点,点M是AB边上一点,当四边形ACDM是“等邻边四边形”时,BM的长为___________.
|
15. 难度:困难 | |
已知直线y=x+2与y轴交于点A,与双曲线y=有一个交点为B(2,3),将直线AB向下平移,与x轴.y轴分别交于点C,D,与双曲线的一个交点为P,若,则点D的坐标为________.
|
16. 难度:困难 | |
如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.
|
17. 难度:中等 | |
(1)计算: (2)先化简,再求值:,其中m=﹣6.
|
18. 难度:中等 | |
小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题: (1)小聪在图书馆查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟; (2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式; (3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?
|
19. 难度:中等 | |
某调查机构将今年绍兴市民最关注的热点话题分为消费.教育.环保.反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下: 根据以上信息解答下列问题: (1)本次共调查_________人,请在答题卡上补全条形统计图并标出相应数据; (2)若绍兴市约有500万人口,请你估计最关注教育问题的人数约为多少万人? (3)在这次调查中,某单位共有甲.乙.丙.丁四人最关注教育问题,现准备从这四中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(画树状图或列表说明).
|
20. 难度:中等 | |
如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m. (1)求∠BCD的度数. (2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
|
21. 难度:中等 | |
如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计). (1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少? (2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
|
22. 难度:中等 | |
在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD. (1)问题发现:如图1,若∠DAB=120°,且∠B=90°,求证:AD+AB=AC; (2)思考探究:如图2,若将(1)中的条件“∠B=90°”去掉,则(1)中的结论是否仍成立?请说明理由; (3)拓展应用:如图3,若∠DAB=90°,AD=2,AB=3,求线段AC的长度.
|
23. 难度:中等 | |
若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形. (1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线; (2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形; (3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.
|
24. 难度:困难 | |
如图,平面直角坐标系中,直线y=-x+与坐标轴分别交于点A、B,且点C在x轴负半轴上,且AB:AC=1:2. (1)求A、C两点的坐标; (2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围; (3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
|