1. 难度:中等 | |
给出四个数0,,π,﹣1,其中最小的是( ) A. 0 B. C. π D. ﹣1
|
2. 难度:中等 | |
下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( ) A. B. C. D.
|
3. 难度:简单 | |
如图,几何体的左视图是( ) A. B. C. D.
|
4. 难度:简单 | |
下列计算正确的是( ) A. x2﹣3x2=﹣2x4 B. (﹣3x2)2=6x2 C. x2y•2x3=2x6y D. 6x3y2÷(3x)=2x2y2
|
5. 难度:简单 | |
利用数轴求不等式组的解集表示正确的是( ) A. B. C. D.
|
6. 难度:简单 | |||||||||||||
某车间20名工人每天加工零件数如表所示:
这些工人每天加工零件数的众数、中位数分别是( ) A. 5,5 B. 5,6 C. 6,6 D. 6,5
|
7. 难度:简单 | |
已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是( ) A. y1<y2<y3 B. y3<y2<y1 C. y2<y1<y3 D. y3<y1<y2
|
8. 难度:简单 | |
在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是( ) A. B. C. D.
|
9. 难度:中等 | |
如图,在 A.
|
10. 难度:中等 | |
如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为( ) A. (1,1) B. (0,) C. () D. (﹣1,1)
|
11. 难度:简单 | |
计算:( -5)0+2=_________.
|
12. 难度:中等 | |
如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2,S△BQC=25cm2,则图中阴影部分的面积为_____cm2.
|
13. 难度:简单 | |
如图,二次函数y=ax2+bx+c(a≠0)的图象与
|
14. 难度:中等 | |
如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,交BA的延长线于点F,若弧EF的长为π,则图中阴影部分的面积为______.
|
15. 难度:中等 | |
如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .
|
16. 难度:中等 | |
先化简,再求值:,其中
|
17. 难度:中等 | |
2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行。为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解 B、比较了解 C、基本了解 D、不了解。根据调查统计结果,绘制了如图所示的不完整的三种统计图表。 (1)本次调查的样本容量是 ,n= ; (2)请补全条形统计图; (3)学校准备开展冬奥会的知识竞赛,该校共有4000名学生,请你估计这所学校本次竞赛“非常了解”和“比较了解”的学生总数。
|
18. 难度:中等 | |
已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD. (1)求证:∠DAC=∠DBA; (2)求证:P是线段AF的中点; (3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
|
19. 难度:中等 | |
如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)
|
20. 难度:中等 | |
如图,点A的坐标为(3,0),点C的坐标为(0,4),OABC为矩形,反比例函数 的图象过AB的中点D,且和BC相交于点E,F为第一象限的点,AF=12,CF=13. (1)求反比例函数和直线OE的函数解析式; (2)求四边形OAFC的面积?
|
21. 难度:中等 | |
某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元. (1)求购买1个排球、1个篮球的费用分别是多少元? (2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?
|
22. 难度:中等 | |
如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点. (1)观察猜想: 图1中,线段PM与PN的数量关系是 ,位置关系是 ; (2)探究证明: 把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由; (3)拓展延伸: 把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
|
23. 难度:困难 | |
如图1,在平面直角坐标系中,抛物线y=与x轴交于A,C(A在C的左侧),点B在抛物线上,其横坐标为1,连接BC,BO,点F为OB中点. (1)求直线BC的函数表达式; (2)若点D为抛物线第四象限上的一个动点,连接BD,CD,点E为x轴上一动点,当△BCD的面积的最大时,求点D的坐标,及|FE﹣DE|的最大值; (3)如图2,若点G与点B关于抛物线对称轴对称,直线BG与y轴交于点M,点N是线段BG上的一动点,连接NF,MF,当∠NFO=3∠BNF时,连接CN,将直线BO绕点O旋转,记旋转中的直线BO为B′O,直线B′O与直线CN交于点Q,当△OCQ为等腰三角形时,求点Q的坐标.
|