相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
江西省宜春市2018-2019学年九年级上学期期末数学试卷
一、单选题
详细信息
1. 难度:简单

下列图形中,是中心对称图形的是(    )

A. B. C. D.

 

详细信息
2. 难度:简单

下列事件是随机事件的是(    )

A.小明购买彩票中奖

B.在标准大气压下,水加热到100°时沸腾

C.在一个装有蓝球和黄球的袋中,摸出红球

D.一名运动员的速度为40/

 

详细信息
3. 难度:中等

若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为(   )

A. m=-6,n=-4 B. m=O,n=-4

C. m=6,n=4 D. m=6,n=-4

 

详细信息
4. 难度:简单

若关于x的方程(a3)x24x10有实数根,则a满足(    )

A.a≥1a≠3 B.a≠3 C.a>﹣1a≠3 D.a≥1

 

详细信息
5. 难度:中等

ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是(  )

A. B. C. D.

 

详细信息
6. 难度:中等

二次函数yax2+bx+c(a≠0)的部分图象如图所示,图象过点(10),对称轴为直线x2,下列结论:(1)4a+b0(2)9a3bc(3)9a+b+c0(4)若方程a(x+1)(x5)=﹣2的两根为x1x2,且x1x2,则x115x2,其中正确的结论有(    )

A.1 B.2 C.3 D.4

 

二、填空题
详细信息
7. 难度:中等

O的直径为8,圆心O到直线l的距离为4,则直线lO的位置关系是_____

 

详细信息
8. 难度:简单

已知关于x的一元二次方程x2+kx30有一个根为1,则另一根为______

 

详细信息
9. 难度:简单

抛物线yx24x+5向左平移一个单位长度后的对称轴是直线______.

 

详细信息
10. 难度:中等

如图,C(30)B(22),以OCBC为边作平行四边形OABC,则经过点A的反比例函数的解析式为______.

 

详细信息
11. 难度:简单

如图,ABO的直径,弦CDABCDB30°CD2,则阴影部分的面积为_____

 

详细信息
12. 难度:中等

如图,RtABC中,∠ABC90°,∠ACB60°BC4cmDBC的中点,若动点E1cm/s的速度从点A出发,沿着A→C→A的方向运动,设点E的运动时间为秒(0≤t≤12),连接DE,当△CDE是直角三角形时,t的值为______.

 

三、解答题
详细信息
13. 难度:中等

(1)解方程:x254x.

(2)如图,四边形ABCD中,∠C60°,∠BED110°BDBC,点EAD上,将BE绕点B逆时针旋转60°BF,且点FDC上,求∠EBD的度数.

 

详细信息
14. 难度:简单

如图,在等边三角形ABC中,点ED分别在BCAB上,且∠AED60°,求证:△AEC~△EDB.

 

详细信息
15. 难度:中等

如图,平面直角坐标系中,以点A(2)为圆心,以2为半径的圆与x轴交于BC两点.若二次函数yx2+bx+c的图象经过点BC,试求此二次函数的顶点坐标.

 

详细信息
16. 难度:中等

如图,△ABC是⊙O的内接三角形,∠ABC45°,请用无刻度的直尺按要求作图.

(1)如图1,请在图1中画出弦CD,使得CDAC.

(2)如图2AB是⊙O的直径,AN是⊙O的切线,点BCN在同一条直线上请在图中画出△ABN的边AN上的中线BD.

 

详细信息
17. 难度:中等

在一个不透明的袋子中装有三个完全相同的小球,分别标有数字234.从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数,请用列表法或画树状图的方法完成下列问题.

(1)按这种方法组成两位数45_____事件,填(“不可能随机必然”)

(2)组成的两位数能被3整除的概率是多少?

 

详细信息
18. 难度:中等

在平面直角坐标系中,抛物线NA(13)B(48)O(00)三点

(1)求该抛物线和直线AB的解析式.

(2)平移抛物线N,求同时满足以下两个条件的平移后的抛物线解析式:①平移后抛物线的顶点在直线AB上;②设平移后抛物线与y轴交于点C,如果SABC3SABO.

 

详细信息
19. 难度:中等

平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1(x0)的图象上,点B与点A关于原点O对称,一次函数y2mx+n的图象经过点B.

(1)a2,点C(42)在函数y1y2的图象上.分别求函数y1y2的表达式.

(2)如图,设函数y1y2的图象相交于点C,点C的横坐标为3a,△ABC的面积为16,求k的值.

 

详细信息
20. 难度:中等

如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接EB的延长线交AC于点F,交⊙O于点D,连接AD,过点D作直线DN,使∠ADN=∠DBC.

(1)求证:直线DN是⊙O的切线;

(2)DF1,且BF3,求AD的长.

 

详细信息
21. 难度:中等

某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.

(1)若每天的利润为3780元,为减少库存,销售单价应定为多少元?

(2)求销售单价为多少元时,每天的销售利润最大?最大利润是多少?

(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本x每天的销售量)

 

详细信息
22. 难度:中等

如图1,在等边△ABC中,点DE分别在边ABAC上,ADAE,连接BECD,点FGH分别是BECDBC的中点

(1)观察猜想:图1中,△FGH的形状是______.

(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△FGH的形状是否发生改变?并说明理由;

(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD2AB6,请直接写出△FGH的周长的最大值.

 

详细信息
23. 难度:中等

已知抛物线yn=﹣(xan)2+bn(n为正整数,且0≤a1a2…≤an)x轴的交点为

A(00)An(n0)nCn1+2,当n1时,第1条抛物线y1=﹣(xa1)2+b1x轴的交点为A(00)A1(20),其他依此类推.

(1)a1b1的值及抛物线y2的解析式.

(2)抛物线的顶点B坐标为(___________);依此类推,第n+1条抛物线yn+1的顶点Bn+1坐标为(_________)所有抛物线的顶点坐标满足的函数关系式是______.

(3)探究下结论:

①是否存在抛物线yn,使得△AAnBn为等腰直角三角形?若存在请求出抛物线的表达式;若不存在,请说明理由.

②若直线xm(m0)与抛物线yn分别交于C1C2Cn则线段C1C2C2C3Cn1Cn的长有何规律?请用含有m的代数式表示.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.