1. 难度:简单 | |
的倒数是( ) A. B. C. D.
|
2. 难度:简单 | |
下列运算正确的是( ) A.﹣3ab+5ab=2ab B.(﹣2a)•a=4a C.3ab•5abc=8abc D.(﹣a)6÷a=a
|
3. 难度:简单 | |
如图,几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( ) A. B. C. D.
|
4. 难度:中等 | |
十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A.8×1012 B.8×1013 C.8×1014 D.0.8×1013
|
5. 难度:中等 | |
不等式组的解集在数轴上表示正确的是( ) A. B. C. D.
|
6. 难度:简单 | |
如图,等腰直角三角板的顶点在直线上.若,,则度数为( ) A. B. C. D.
|
7. 难度:中等 | |
如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是( ) A.众数是7 B.中位数是6.5 C.平均数是 6.5 D.平均每周锻炼超过6小时的人占总数的一半
|
8. 难度:简单 | |
要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( ) A.x(x﹣1)=30 B.x(x+1)=30 C.=30 D.=30
|
9. 难度:中等 | |
某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费 用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则下列说法正确的是: A.①反映了建议(Ⅱ),③反映了建议(Ⅰ) B.②反映了建议(Ⅰ),④反映了建议(Ⅱ) C.①反映了建议(Ⅰ),③反映了建议(Ⅱ) D.②反映了建议(Ⅱ),④反映了建议(Ⅰ)
|
10. 难度:中等 | |
矩形COED在平面直角坐标系中的位置如图所示,若点D的坐标是(1,3),则CE的长是() A.3 B.2 C. D.4
|
11. 难度:中等 | |
分解因式:4m2﹣16n2=_____.
|
12. 难度:简单 | |
关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是_____.
|
13. 难度:简单 | |
如图,在扇形OAB中,∠AOB=100°,半径OA=6,将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点D处,折痕交OB于点C,则弧BD的长为_____.
|
14. 难度:中等 | |
如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.
|
15. 难度:中等 | |
计算:﹣|1﹣|﹣sin30°+2﹣1.
|
16. 难度:简单 | |
我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.
|
17. 难度:简单 | |
如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(﹣3,﹣1)、(﹣3,﹣3)、(﹣3+,﹣2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2. ①直接写出点C1的坐标 ,点C2的坐标 ; ②能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由); ③设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1、△ABC之间的对称关系始终保持不变,当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合?并直接写出此时点C的坐标?
|
18. 难度:中等 | |
平面上5个圆最多能把平面分成多少个部分?一般地,n个圆最多能把平面分成多少个部分?
|
19. 难度:中等 | |
自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm,车座B到地面的距离BE为90cm,中轴轴心C到地面的距离CF为33cm,车架中立管BC的长为60cm,后轮切地面L于点D.(参考数据:sin72≈0.95,cos18°≈0.95,tan43.5°≈0.9 5) (1)求∠ACB的大小(精确到1°) (2)如果希望车座B到地面的距离B'E′为96.8cm,车架中立管BC拉长的长度BB′应是多少?(结果取整数)
|
20. 难度:中等 | |
如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F. (1)求证:BC为⊙O的切线; (2)若F为OA的中点,⊙O的半径为2,求BE的长.
|
21. 难度:中等 | |
“宜居襄阳”是我们的共同愿景,空气质量备受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图. 请根据图中信息,解答下列问题: (1)统计图共统计了 天的空气质量情况; (2)请将条形统计图补充完整;空气质量为“优”所在扇形的圆心角度数是 ; (3)从小源所在环保兴趣小组4名同学(2名男同学,2名女同学)中,随机选取两名同学去该空气质量监测站点参观,则恰好选到一名男同学和一名女同学的概率是 .
|
22. 难度:中等 | |
绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系. (1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式; (2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式; (3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?
|
23. 难度:困难 | |
如图1,ABCD是边长为1的正方形,O是正方形的中心,Q是边CD上一个动点(点Q不与点C、D重合),直线AQ与BC的延长线交于点E,AE交BD于点P.设DQ=x. (1)填空:当时,的值为 ; (2)如图2,直线EO交AB于点G,若BG=y,求y关于x之间的函数关系式; (3)在第(2)小题的条件下,是否存在点Q,使得PG∥BC?若存在,求x的值;若不存在,说明理由.
|