相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
江西省赣州市宁都县2019-2020学年八年级上学期期中数学试卷
一、单选题
详细信息
1. 难度:简单

下列图形中,只有两条对称轴的图形是(    ).

A. B. C. D.

 

详细信息
2. 难度:中等

根据下列条件判断,以a,b,c为边的三角形不是直角三角形的是(  )

A. B.

C. D.a:b::12:13

 

详细信息
3. 难度:中等

估计20的算术平方根的大小在( )

A.23之间 B.34之间 C.45之间 D.56之间

 

详细信息
4. 难度:简单

用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠DOC=∠DOC,需要证明DOC≌△DOC,则这两个三角形全等的依据是(  )

A.SAS B.SSS C.ASA D.AAS

 

详细信息
5. 难度:中等

等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为(  

A. B. C. D.

 

详细信息
6. 难度:中等

如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是(  )

A. B. C. D.

 

二、填空题
详细信息
7. 难度:简单

若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是   

 

详细信息
8. 难度:简单

三角形两边长分别是35,第三边长为偶数,则第三边长为_______

 

详细信息
9. 难度:简单

如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东50°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按β _____________度的方向动工.

 

详细信息
10. 难度:简单

如图,已知线段ABCD相交于点O,且∠A=∠B,若有AOC≌△BOD,需补充一个条件是_____

 

详细信息
11. 难度:中等

如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.

 

详细信息
12. 难度:简单

已知有两个三角形全等,若一个三角形三边的长分别为357,另一个三角形三边的长分别为33a2ba+2b,则a+b_____

 

三、解答题
详细信息
13. 难度:简单

计算

1

2

 

详细信息
14. 难度:中等

实数a、b在数轴上的位置如图所示,请化简:|a|

 

详细信息
15. 难度:中等

一个多边形的内角和比它外角和的3倍少180°,求这个多边形的边数.

 

详细信息
16. 难度:简单

△ABC 在平面直角坐标系中的位置如图所示.A、B、C 三点在格点上.

(1)作出△ABC 关于 x 轴对称的△A1B1C1,并写出点 C1 的坐标;

(2)作出△ABC 关于 y 对称的△A2B2C2,并写出点 C2 的坐标.

 

详细信息
17. 难度:中等

如图,AMAN,点B和点C分别为∠MAN两边上的点,ABAC.按下列语句画出图形:(要求用无刻度直尺作图,)

1ADBC,垂足为D

2)在完成(1)后不添加线段和字母的情况下,请你写出除ABD≌△ACD外的两对全等三角形:

 

详细信息
18. 难度:简单

如图.在ABCDEF中,BECF在同一直线上,ABDEBECFABED.求证:ACDF

 

详细信息
19. 难度:中等

如图梯形ABCD中,ADBCABADCDBDCD,求∠C的度数.

 

详细信息
20. 难度:中等

如图,点E在△ABC外部,点D在边BC上,DE交AC于点F.若∠1=∠2=∠3,AC=AE,求证△ABC≌△ADE.

 

详细信息
21. 难度:中等

如图,已知AC平分∠BADCEABECFADF,且BCCD

1)求证:BCE≌△DCF

2)若AB21AD9BCCD10,求BE的长.

 

详细信息
22. 难度:中等

如图,长方形ABCDADBC,边AB4BC8.将此长方形沿EF折叠,使点D与点B重合,点C落在点G处.

1)试判断BEF的形状,并说明理由;

2)若AE3,求BEF的面积.

 

详细信息
23. 难度:中等

数学课上,李老师出示了如下的题目:

在等边三角形ABC中,点EAB上,点DCB的延长

线上,且ED=EC,如图,试确定线段AEDB的大小关系,

并说明理由

小敏与同桌小聪讨论后,进行了如下解答:

1)特殊情况,探索结论

当点的中点时,如图1,确定线段的大小关系,请你直接写出结论:      (填“>”,“<”“=”.

2)特例启发,解答题目

【解析】
题目中,
的大小关系是:     (填“>”,“<”“=”.理由如下:如图2,过点,交于点.

(请你完成以下解答过程)

3)拓展结论,设计新题

在等边三角形中,点在直线上,点在直线上,且.的边长为1,求的长(请你直接写出结果).

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.