1. 难度:简单 | |
下列二次根式中,能与合并的式子的是( ) A. B. C. D.
|
2. 难度:简单 | ||||||||||||||||
选拔一名选手参加区中学生男子百米比赛,我校四名中学生参加了训练,他们成绩的平均数及其方差s2如表所示:
要选拔一名成绩好且发挥稳定的同学,最合适的是( ) A.甲 B.乙 C.丙 D.丁
|
3. 难度:中等 | |
某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为 A. B. C. D.
|
4. 难度:中等 | |
将直线向左平移2个单位所得的直线的解析式是 A. B. C. D.
|
5. 难度:中等 | |
已知四边形是平行四边形,下列结论中不正确的是( ) A. 当时,它是菱形 B. 当时,它是菱形 C. 当时,它是矩形 D. 当时,它是正方形
|
6. 难度:中等 | |
由线段组成的三角形不是直角三角形的是( ) A. B. C. D.
|
7. 难度:简单 | |
一次演讲比赛中,小明的成绩如下:演讲内容为70分,演讲能力为60分,演讲效果为88分,如果演讲内容、演讲能力、演讲效果的成绩按4:2:4计算,则他的平均分为 分. A. B. C. D.
|
8. 难度:中等 | |
如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是 A. B. C. D.
|
9. 难度:简单 | |
我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为() A.(,1) B.(2,1) C.(2,) D.(1,)
|
10. 难度:困难 | |
如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片,使AD落在BC上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E、G,连结GF,给出下列结论①∠AGD=110.5°;②S△AGD=S△OGD;③四边形AEFG是菱形;④BF=OF;⑤如果S△OGF=1,那么正方形ABCD的面积是12+8,其中正确的有( )个. A.2个 B.3个 C.4个 D.5个
|
11. 难度:简单 | |
若式子有意义,则x的取值范围是_____.
|
12. 难度:简单 | |
某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的众数和中位数分别为_____.
|
13. 难度:中等 | |
已知等腰三角形的周长为20 cm,则腰长x(cm)与底边y(cm)的函数关系式为______,其中自变量x的取值范围是______.
|
14. 难度:中等 | |
如图,在Rt△ABC中∠BAC=90°,D,E分别是AB,BC的中点,F在CA的延长线上∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为_____.
|
15. 难度:中等 | |
如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.
|
16. 难度:中等 | |
1号探测气球从海拔10米处出发,以1m/min的速度上升,与此同时,2号探测气球从海拔20m处出发,以0.5m/min的速度上升,两个气球都匀速上升了1h.则表示1号和2号两个气球所在位置的海拔y(单位:m)关于上升时间x(单位:min)的函数关系分别为:y1=_____,y2=_____;上升了_____min这两个气球相距5m.
|
17. 难度:中等 | |
如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.
|
18. 难度:中等 | |
如图所示,直线y=x+1与y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2,再以C1A2为边作正方形C1A2B2C2,记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3,再以C2A3为边作正方形C2A3B3C3,记作第三个正方形;…,依此类推,则第n个正方形的边长为_____.
|
19. 难度:中等 | |
计算: (1) (2)
|
20. 难度:中等 | ||||||||||||||||||||||||||||||||||
为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如表:
(1)经计算甲和乙的平均成绩是8(环),请求出表中的a= ; (2)甲成绩的中位数是 环,乙成绩的众数是 环; (3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?
|
21. 难度:中等 | |
如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD. (1)求证:四边形CEDF是平行四边形; (2)若AB=3,AD=4,∠A=60°,求CE的长.
|
22. 难度:中等 | |
如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.
|
23. 难度:中等 | ||||||||||
为了迎接五一黄金周的购物高峰,某品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. (1)求m的值; (2)若购进乙种运动鞋x(双),要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于13000元且不超过13500元,问该专卖店有几种进货方案; (3)在(2)的条件下求出总利润y(元)与购进乙种运动鞋x(双)的函数关系式,并用关系式说明哪种方案的利润最大,最大利润是多少.
|
24. 难度:困难 | |
操作与证明: 如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断线段MD与MN的关系,得出结论; 结论:DM、MN的关系是: ; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C旋转180°,其他条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
|
25. 难度:困难 | |
已知:直线y=x+3与x轴、y轴分别相于点A和点B,点C在线段AO上. 将△CBO沿BC折叠后,点O恰好落在AB边上点D处 (1)求直线BC的解析式; (2)求点D的坐标; (3)P为平面内一动点,且以A、B、C、P为顶点的四边形为平行四边形,直接写出点P坐标 .
|